PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 2(2) Selected Aspects of Production Engineering in Management and Materials Engineering | 312--320
Tytuł artykułu

Microstate of Basic Phase of High-Alloyed Ferritic Steels

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In according with the stated conception the purpose of the present work is the reconstruction of some of innumerable microstates of α phase of ferritic steels, definition of its macroparameters and their subsequent comparison with indicators of mechanical properties of industrially let out steels. The establishment of a correlation between the measured indicators of mechanical properties of already created materials and the calculated state parameters of their basic phase opens an opportunity of mechanical properties prediction of materials in dependence on their prehistory that as a matter of fact represents the central task of material science. Simulation of α-phase state of series of industrially let out ferritic steels and alloys is executed in the assumption of identity of its composition to composition of steel or alloy as a whole. The correlation between indicators of mechanical properties of steels and alloys and state parameters of their basic phase is traced. (original abstract)
Twórcy
  • Altai State Technical University of I.I. Polzunova, Russian Federation
autor
  • Altai State Technical University of I.I. Polzunova, Russian Federation
  • Czestochowa University of Technology, Poland
Bibliografia
  • Alexandrov, S.A., Vasiljev, V.V., Ostashev, V.V., (1982). Increasing of exploitation characteristics of dopind steels by thermo-cycling treatment. Mechanization and automation is reserve of productivity of labor. Pskov, pp.163-165.
  • Baranov. M.A. (2014). Two-center overlap integrals - it is simply. International Science-Research Journal, part 2, 4(23), pp. 5-8.
  • Baranov. M.A. (2017). Definition of distribution parameters of outlying electron density of atoms from equilibrium conditions of formed by them monocomponent crystals. International scientific magazine "Science Symbol" part 2, 4, pp. 8-12.
  • Baranov, M.A. (2017). Interconnection between properties of crystals and distribution of outlying electrons in shells of atoms formed them. International scientific magazine "Science Symbol", part 2, 2, pp. 15-21.
  • Cohn, V. (2002). Electronic structure of substances-wave functions and density functional. Success of physical science, 3.
  • Eckstein, V. (1995). Computer simulation of particle interactions with surfaces of solids. World, Moscow.
  • Egorova. Y.B., Davydenko. R.A., Davydenko. L.V. (2012). Correlation elongation of titanium alloys with the chemical composition. Materials Science, 9.
  • Fillipov, M.A., Baraz, V.R. et. al. (2013). Selection methodology of metallic alloys and hardening technology in mechanical engineering. Steels and cast irons 1, Ekaterinburg, Ural, p. 232.\
  • Grinberg. B.A., Sjutkina. V.I. (1984). New mechanisms of hardening of ordered alloys. Metallurgy, Moscow, p. 173.
  • Guljaev, A.P. (1977). Metal science. Metallurgy, Moscow, p. 647.
  • Gurkov, S.N., Kuksenko, V.S., Petrov, V.A. (1981). Physical bases of forecasting of mechanical destruction. RAS USSR, 259, N 6, pp. 1350-1353.
  • Kelly, A. (1994). Concise Encyclopedia of Composite Materials. Elsevier Science, p. 378.
  • Kolokoltsev, V.M., Sinitskyi, E.V., Volkov, S.Uj. (2011) Analytical and engineering criterions of estimation of abrasive wear resistance of ingots as indicator of their quality. Herald of MSTU, N 2, pp. 16-18.
  • Kositsin, S.V. (2008). Alloys and coatings based on nickel/monoaljuminida, URD RAS, Ekaterinburg.
  • Kuznetsov. V.A., Shaysultanov. D.G., Stepanov. N.D., Salishchev. G.A., Senkov. O.N. (2013). Superplasticity of AlCoCrCuFeNi High Entropy Alloy. Material Science Forum, 735, pp. 146-151.
  • Mileiko, S.T. (1997). Metal and Ceramic Based Composites. Elsevier Science, 12, p. 704.
  • Otto. F., Dlouhy. A., Somsen. Ch., Bei. H., Eggeler. G., E.P. (2013). The influence of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy. Acta Materialia, 61, pp. 5743-5755.
  • Panin, V.E., Grinjaev. Ju.V., Elsukova. T.F. (1982). Sructural levels of solid solution deformation. News of Higher Schools, 6, p.5-27.
  • Schrödinger, E. (1976). Selected papers on quantum mechanics. Science. Moscow.
  • Shank. F.A. (1973). Structures of binary alloys. Metallurgy. Moscow, p. 760.
  • Shljamnev, A.P. (2000). Corrosion-resistant, temperature-resistant and high-strength steels and alloys. Intermet Engeneering, p. 232.
  • Wang. Y.P., Li. B.Sh., Heng. Zh.F. (2009). Solid Solution or Intermetallic in a High Entropy Alloy. Advanced Engineering Materials, 11, pp. 641-644.
  • Zhang. Y., Zhou. Y.J., Lin. J.P., Chen. G.L., Liaw P.K. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp. 534-538.
  • Zolotarevskyi, V.S. (1983). Mechanical properties of metals. Metallurgy, Moscow, p. 352.
  • Zubthenko, A.S. (2003). Grades of steels and alloys. Mechanical engineering, Moscow, p. 783.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171592453

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.