PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 11 | nr 2 | 107--112
Tytuł artykułu

Hybrid Genetic Algorithm for Bi-criteria Objectives in Scheduling Process

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this research is to compare the results of the study of demand's plan andstandardized time based on three heuristic scheduling methods such as Campbell DudekSmith (CDS), Palmer, and Dannenbring. This paper minimizes the makespan under certainand uncertain demand for domestic boxes at the leading glass company industry in Indonesia.The investigation is run in a department called Preparation Box (later simply called PRP)which experiences tardiness while meeting the requirement of domestic demand. The effectof tardiness leads to unfulfilled domestic demand and hampers the production departmentdelivers goods to the customer on time. PRP needs to consider demand planning for thenext period under the certain and uncertain demand plot using the forecasting and MonteCarlo simulation technique. This research also utilizes a work sampling method to calcu-late the standardized time, which is calculated by considering the performance rating andallowance factor. This paper contributes to showing a comparison between three heuristicscheduling methods performances regarding a real-life problem. This paper concludes thatthe Dannenbring method is suitable for large domestic boxes under certain demand whilePalmer and Dannenbring methods are suitable for large domestic boxes under uncertaindemand. The CDS method is suitable to prepare small domestic boxes for both certain anduncertain demand.(original abstract)
Rocznik
Tom
11
Numer
Strony
107--112
Opis fizyczny
Twórcy
  • JSS Academy of Technical Education, India
Bibliografia
  • Wang X., Zhang C., Gao L., Li P., A survey and future trend of study on multi-objective scheduling, 2008 Fourth International Conference on Natural Computation, 6, 382-391, 2008.
  • Reddy B.S.P., Rao C.S.P., A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS, International Journal of Advanced Manufacturing Technology, 31, 5-6, 602-613, 2006.
  • Gen M., Lin L., Multiobjective genetic algorithm for scheduling problems in manufacturing systems, Industrial Engineering & Management Systems, 11, 4, 310-330, 2012.
  • Goldberg D.E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Boston, 1989.
  • Miettinen K., Nonlinear multiobjective optimiza- tion, Springer, New York, 1999.
  • Srinivas N., Deb K., Multiobjective optimization using nondominated sorting in genetic algorithms, Journal of Evolutionary Computation, 2, 3, 221248, 1995.
  • Li B., Li J., Tang K., Yao X., Many-objective evolutionary algorithms: a survey, ACM Computing Surveys, 48, 1, 13, 2015.
  • Yang S., Li M., Liu X., Zheng J., A grid-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 17, 5, 721-736, 2013.
  • Deb K., Jain H., An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach. Part I: solving problems with box constraints, IEEE Transactions on Evolutionary Computation, 18, 4, 577-601, 2014.
  • Zhang X., Tian Y., Jin Y., A knee point driven evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 19, 6, 761-776, 2014.
  • Zhang X., Tian Y., Cheng R., Jin Y., A decision variable clustering-based evolutionary algorithm for large-scale many objective optimization, IEEE Transactions on Evolutionary Computation, 99, 1-1, 2017, doi: 10. 1109/TEVC.2016.2600642.
  • Li K., Deb K., Zhang Q., Kwong S., An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Transactions on Evolutionary Computation, 19, 694-716, 2015.
  • Li M., Yang S., Liu X., Pareto or non-Pareto: bicriterion evolution in multi objective optimization, IEEE Transactions on Evolutionary Computation, 20, 5, 645-665, 2016.
  • McClymont K. Keedwell E., Deductive sort and climbing sort: new methods for non-dominated sorting, IEEE Transactions on Evolutionary Computation, 20, 1, 1-26, 2012.
  • Zhang X., Tian Y., Cheng R., Jin Y., An efficient approach to non-dominated sorting for evolutionary multi-objective optimization, IEEE Transactions on Evolutionary Computation, 19, 2, 201-213, 2015.
  • Wang H., Yao X., Corner sort for Pareto-based many-objective optimization, IEEE Transactions on Cybernetics, 44, 1, 92-102, 2014.
  • Zhang X., Tian Y., Jin Y., Approximate non- dominated sorting for evolutionary many-objective optimization, Information Sciences, 369, 14-33, 2016.
  • Chaudhari P.M, Dharaskar R.V., Thakare V.M., Computing the most significant solution from Pareto front obtained in multi-objective evolutionary, International Journal of Advanced Computer Sciences and Applications, 1, 4, 63-68, 2010.
  • Tian Y., Wang H., Zhang X., Jin Y., Effectiveness and efficiency of non-dominated sorting for evo- lutionary multi- and many-objective optimization, Complex & Intelligent Systems, 3, 4, 247-263, 2017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171594695

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.