PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | z. 144 | 671--680
Tytuł artykułu

Investment Risk Assessment Based on the Long-term Memory Parameter

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The presence of a long-term memory component in a time series means that even very distant observations exert a certain influence on subsequent implementations of the process. Generally, this relationship is not particularly strong, but it does exist. Interpreting this phenomenon in the context of financial time series, one can come to the conclusion that information that has affected the market some time ago may still be important for the current quotation. The article is devoted to checking the existence of a long-term memory in the financial time series and assessing the investment risk of these series based on the long-term memory parameter. Design/methodology/approach: In order to study the phenomenon of long-term memory in financial time series, the local Whittle estimator was used, while the investment risk assessment was carried out using the fractal dimension, β-coefficient and standard deviation of rates of return. Findings: In the first part of the study the author indicated time series which were characterized by the phenomenon of long-term memory. Then, on the basis of selected measures, the risk of investment was estimated and shares with the least risk were indicated. Research limitations/implications: The results obtained for selected measures showed discrepancies between the shares with the highest and the lowest level of investment risk. Although the results obtained do not give a definite answer which risk measure is more effective, they encourage the use of other measures related to the phenomenon of long-term memory. Practical implications: Application in portfolio analysis. Originality/value: The use of the long-term memory parameter to assess the investment risk of shares. (original abstract)
Rocznik
Numer
Strony
671--680
Opis fizyczny
Twórcy
  • University of Economics in Katowice
Bibliografia
  • 1. Chun, S.H., Kim, K.J., and Kim, S.H. (2002). Chaotic Analysis of Predictability versus Knowledge Discovery Techniques: Case Study of Polish Stock Market. Expert Systems, 19(5), 264-272
  • 2. Fama, E. (1970). Efficient Capital Market: A Review of Theory and Empirical Work. The Journal of Finance, 25, 2, 383-417.
  • 3. Gurgul, H., and Wójtowicz, T. (2006). Długookresowe własności wolumenu obrotów i zmienności cen akcji na przykładzie spółek z indeksu DIJA. Badania operacyjne decyzyjne, 3-4, 29-56.
  • 4. Hurst, H.E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799.
  • 5. Jajuga, K., and Jajuga, T. (2006). Inwestycje. Warszawa: PWN.
  • 6. Kwiatkowski, J. (2017). Procesy z długą pamięcią i modele ARFIMA. Retrieved from: www.home.umk.pl/~jkwiat/ARFIMA.pdf, 13.07.2017.
  • 7. Orzeszko, W. (2010). Wymiar fraktalny szeregów czasowych a ryzyko inwestowania. Acta Universitatis Nicolai Copernici. Ekonomia, XLI. Nauki Humanistyczno-Społeczne, 397, 57-70.
  • 8. Ostrowska, E. (2007). Rynek kapitałowy: funkcjonowanie i metody oceny. Warszawa:PWE.
  • 9. Palma, W. (2007). Long-memory time series. Hoboken, New Jersey: John Wiley & Sons Inc.
  • 10. Robinson, P. (1995). Gaussian Semiparametric Estimation of long range dependence. The annals of statistic, 23(5), 1630-1661.
  • 11. Taqqu, M.S. and Teverovsky, V. (1997). Robustness of Whittle-type Estimators for Time Series with Long-Range Dependence. Retrieved from: https://pdfs.semanticscholar.org/ d4cb/4c4955245f213a677bce7269d47f4b8db665.pdf, 14.07.2017.
  • 12. Zeug-Żebro, K., and Miśkiewicz-Nawrocka, M. (2018). Pomiar ryzyka portfeli inwestycyjnych zbudowanych na podstawie charakterystyk teorii chaosu. Zeszyty Naukowe Politechniki Śląskiej, Seria: Organizacja i Zarządzanie, 130, 687-697.
  • 13. Zeug-Żebro, K., and Szafraniec, M. (2018). Analysis of the phenomenon of long-term memory in financial time series. In: L. Váchová, V. Kratochvíl (eds.), Proceedings of 36th International Conference Mathematical Methods in Economics, Czech Republic, Jindřichův Hradec, 216-221.
  • 14. Zwolankowska, D. (2000). Metoda segmentowo-wariacyjna. Nowa propozycja liczenia wymiaru fraktalnego. Przegląd Statystyczny, 47, 1-2, 209-224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171597007

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.