PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 20 | nr 1 | 131--151
Tytuł artykułu

An Application of Functional Data Analysis to Local Damage Detection

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration signals sampled with a high frequency constitute a basic source of information about machine behaviour. Few minutes of signal observations easily translate into several millions of data points to be processed with the purpose of the damage detection. Big dimensionality of data sets creates serious difficulties with detection of frequencies specific for a particular local damage. In view of that, traditional spectral analysis tools like spectrograms should be improved to efficiently identify the frequency bands where the impulsivity is most marked (the so-called informative frequency bands or IFB). We propose the functional approach known in modern time series analysis to overcome these difficulties. We will process data sets as collections of random functions to apply techniques of the functional data analysis. As a result, we will be able to represent massive data sets through few real-valued functions and corresponding parameters, which are the eigenfunctions and eigen-values of the covariance operator describing the signal. We will also propose a new technique based on the bootstrap resampling to choose the optimal dimension inrepresenting big data sets that we process. Using real data generated by a gearbox and a wheel bearings we will show how these techniques work in practice. (original abstract)
Rocznik
Tom
20
Numer
Strony
131--151
Opis fizyczny
Twórcy
  • Cracow University of Technology
  • Pedagogical University of Cracow, Poland
Bibliografia
  • BOSQ, D., (2000). Linear Processes in Function Spaces, Springer Verlag.
  • CHU, F., FENG, Z., LIANG, M., (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples, Mechanical Systems and Signal Processing, Vol. 38, No. 1, pp. 165-205.
  • CIOCH, W., KNAPIK, O., LESKOW, J., (2013).´ Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics, Mechanical Systems and Signal Processing, Vol. 38, pp. 55-64.
  • GRYLLIAS, K., ANDRE, H., LECLERE, Q., ANTONI, J., (2017). Condition monitoring of rotating machinery under varying operating conditions based
  • on Cyclo- Non-Stationary Indicators and a multi-order probabilistic approach for instantaneous angular speed tracking, IFAC papers online, Vol. 50-1, pp. 4708-4712.
  • GUO, X, CHEN, L., SHEN, CH., (2016). Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement, Vol. 93, pp. 490-502.
  • HORVATH, L., KOKOSZKA, P., (2012). Inference for Functional Data with Applica-´ tions, Springer-Verlag, New York etc.
  • JIA, F., LEI, Y., LIN, J., ZHOU, X., LU, N., (2016). Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mechanical Systems and Signal Processing, Vol. 72-73, pp. 303-315.
  • KHADERSAB, A., SHIVAKUMAR, DR. S., (2018). Vibration Analysis Techniques for Rotating Machinery and its effect on Bearing Faults, Procedia Manufacturing, Vol. 20, pp. 247-252.
  • KRUCZEK, P., WODECKI, J., WYŁOMANSKA, A., (2017). Novel method of infor-´ mative frequency band selection for vibration signal using nonnegative matrix factorization of short-time fourier transform, IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED).
  • LIU, R., YANG, B., ZIO, E., CHEN, X., (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review, Mechanical Systems and Signal Processing, Vol. 108, pp. 33-47.
  • MAS, A., (2002). Weak convergence for the covariance operators of a Hilbertian linear process, Stochastic Processes and their Applications, 99, pp. 117-135.
  • OBUCHOWSKI, J. WYŁOMANSKA, A., ZIMROZ, R., (2014). Selection of informa-´ tive frequency band in local damage detection in rotating machinery, Mechanical Systems and Signal Processing, 48, pp. 138-152.
  • RANDALL, B., ANTONI, J., (2011). Rolling element bearing diagnostics - A tutorial, Mechanical Systems and Signal Processing, Vol. 25, pp. 485-520.
  • RAMSAY, J. O., SILVERMAN, B. W., (2002). Applied functional data analysis, Springer-Verlag.
  • RAMSAY, J. O., SILVERMAN, B. W., (2005). Functional data analysis, SpringerVerlag.
  • SPIRIDONAKOS, M. D., FASSOIS, S. D., (2014). Non-stationary random vibration modelling and analysis via functional time-dependent ARMA (FS-TARMA) models - A critical survey, Mechanical Systems and Signal Processing, Vol. 47, pp. 175-224.
  • STASZEWSKI, W. J., WALLACE, D. M., (2014). Wavelet-based Frequency Response Function for time-variant systems - An exploratory study, Mechanical Systems and Signal Processing, Vol. 47, pp. 35-49.
  • YANG, Y., NAGARAJAIAH, S., (2014). Blind identification of damage in timevarying systems using independent component analysis with wavelet transform, Mechanical Systems and Signal Processing, Vol. 47, pp. 3-20.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171597673

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.