PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | 15 | nr 3 | 391--417
Tytuł artykułu

Estimating the Parameter of Inequality Aversion on the Basis of a Parametric Distribution of Incomes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: In applied welfare economics, the constant relative inequality aversion function is routinely used as the model of a social decisionmaker's or a society's preferences over income distributions. This function is entirely determined by the parameter, ε, of inequality aversion. However, there is no authoritative answer to the question of what the range of ε an analyst should select for empirical work.
Purpose of the article: The aim of this paper is elaborating the method of deriving ε from a parametric distribution of disposable incomes.
Methods: We assume that households' disposable incomes obey the generalised beta distribution of the second kind GB2(a,b,p,q). We have proved that, under this assumption, the social welfare function exists if and only if ε belongs to (0,ap+1) interval. The midpoint εmid of this interval specifies the inequality aversion of the median social-decisionmaker.
Findings & Value added: The maximum likelihood estimator of εmid has been developed. Inequality aversion for Poland 1998-2015 has been estimated. If inequality is calculated on the basis of disposable incomes, the standard inequality-development relationship might be complemented by inequality aversion. The "augmented" inequality-development relationship reveals new phenomena; for instance, the stage of economic development might matter when assessing the impact of inequality aversion on income inequality. (original abstract)
Czasopismo
Rocznik
Tom
15
Numer
Strony
391--417
Opis fizyczny
Twórcy
  • Gdansk University of Technology, Poland
Bibliografia
  • Aghion, P., & Bolton, P. (1997). A theory of trickle-down growth and development. Review of Economic Studies, 64(2). doi: 10.2307/2971707.
  • Aitchison, J., & Brown, J. A. C. (1956). The lognormal distribution. Cambridge: Cambridge University Press.
  • Amiel, Y., Cowell, F., & Slottje, D. (2004). Why do people violate the transfer principle? Evidence from educational sample surveys. Research on Economic Inequality, 11.
  • Amiel, Y., Creedy, J., & Hurn, S. (1999). Measuring attitudes towards inequality. Scandinavian Journal of Economics, 101(1). doi: 10.1111/1467-9442.00142.
  • Aristei, D., & Perugini, C. (2016). Inequality aversion in post-communist countries in the years of the crisis. Post-Communist Economies, 28(4). doi: 10.1080/14631377.2016.1224053.
  • Aroian, L. A., Taneja, V. S., & Cornwell, L. W. (1978). Mathematical forms of the distribution of the product of two normal variables. Communications in Statistics - Theory and Methodology, A72.
  • Atkinson, A. (1970). On the measurement of economic inequality. Journal of Economic Theory, 2(3). doi: 10.1016/0022-0531(70)90039-6.
  • Atkinson, A. B. (1980). Wealth, income and inequality. Oxford: Oxford University Press.
  • Bandourian, R., McDonald, J. B., & Turley, R. S. (2003). A comparison of parametric models of income distribution across countries and years. Estadistica 55.
  • Beckman, S. R., Formbyand, J. P., & Smith, W. J. (2004). Efficiency, equity and democracy: experimental evidence on Okun's leaky bucket. In: F. Cowell (Ed.). Inequality, welfare and income distribution: experimental approaches. Amsterdam: Emerald Group Publishing Limited.
  • Brazauskas, V. (2002). Fisher information matrix for the Feller-Pareto distribution. Statistics & Probability Letters, 59(2). doi: 10.1016/S0167-7152(02)00143-8.
  • Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13.
  • Carlsson, F., Daruvala, D., & Johansson-Stenman, O. (2005). Are people inequality-averse or just risk-averse? Economica, 72. doi: 10.1111/j.0013-0427.2005.00421.x.
  • Chernoff, H., & Lehmann, E. L. (1954). The use of maximum-likelihood estimates in χ 2 test for goodness of fit. Annals of Mathematical Statistics, 25(3). doi: 10.1214/aoms/1177728726.
  • Clark, A. E., & D'Ambrosio, C. (2015). Attitudes to income inequality: experimental and survey evidence. In: A. B. Atkinson & F. Bourguignon (Eds.). Handbook of income distribution. Amsterdam: Elsevier.
  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
  • Cowell, F., & Gardiner, K. (1999). Welfare weights. STICERD. London School of Economics.
  • Cui, G., Yu, X., Iommelli, S., & Kong, L. (2016). Exact distribution for the product of two correlated Gaussian random variables. IEEE Signal Processing Letters, 23. doi: 10.1109/LSP.2016.2614539.
  • D'Agostino, R .D., & Stephens, M. A. (1986). Goodness-of-fit techniques. New York and Basel: Marcel Dekker Inc.
  • Dagum, C. (1977). A new model of personal income distribution: specification and estimation. Economie Appliquée, 30.
  • Dahan, M., & Tsiddon, D. (1998). Demographic transition, income distribution, and economic growth. Journal of Economic Growth, 3(1). doi: 10.1023/A:1009 769930916.
  • Fisk, P. R. (1961). The graduation of income distribution. Econometrica, 29.
  • Fisz, M. (1967). Probability theory and mathematical statistics. New York: Wiley.
  • Frisch, R. (1959). A complete system for computing all direct and cross-demand elasticities in a model with many sectors. Econometrica, 27.
  • Galor, O., & Tsiddon, D. (1996). Income distribution and growth: the Kuznets hypothesis revisited. Economica, 3.
  • Gouveia, M., & Strauss, R. P. (1994). Effective federal individual income tax functions: an exploratory empirical analysis. National Tax Journal, 47.
  • Harvey, J. (2003). A note on the `natural rate of subjective inequality' hypothesis and the approximate relationship between the Gini coefficient and the Atkinson index. Journal of Public Economics, 89. doi: 10.1016/j.jpubeco.2004.05.002.
  • Hoffmann, R. (2001). Effect of the rise of a person's income on inequality. Brazilian Review of Econometrics, 21. doi: 10.12660/bre.v21n22001.2751.
  • Jenkins, S. P. (2007). gb2fit: Stata module to fit Generalized Beta of the Second Kind distribution by maximum likelihood. Statistical Software Components Archive, S456823.
  • Jenkins, S. P. (2007). Inequality and the GB2 income distribution. ENCINEQ Working Paper, 73.
  • Kleiber, C. (1997). The existence of population inequality measures. Economics Letters, 57. doi: 10.1016/S0165-1765(97)81877-0.
  • Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Hoboken, NJ.: Wiley,
  • Kolm, S. Ch. (1969). The optimal production of social justice. In: J. Margolis & H. Guitton, H. (Eds.). Public economics. London and New York: Macmillan.
  • Kot, S. M. (2009). The boundaries for inequality aversion and certain measures of income inequality. Prace i Materiały Wydziału Zarządzania Uniwersytetu Gdańskiego, 4/2.
  • Kot, S. M. (2012). Towards the stochastic paradigm of welfare economics. Cracow: Impuls.
  • Kot, S. M. (2017). Estimating inequality aversion from subjective assessments of the just noticeable differences in welfare. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(1). doi: 10.24136/eq.v12i1.7.
  • Kuznets, S. (1955). Economic growth and income inequality. American Economic Review, 45.
  • Lambert, P. J. (2001). The distribution and redistribution of income: a mathematical analysis. Manchester: Manchester University Press.
  • Lambert, P. J., & Lanza, G. (2006). The effect on inequality of changing one or two incomes. Journal of Economic Inequality, 4(3). doi: 10.1007/s10888-006-9020-1.
  • Lambert, P. J., Millimet, D. L., & Slottje, D. (2003). Inequality aversion and the natural rate of subjective inequality. Journal of Public Economics, 87. doi: 10.1016/S0047-2727(00)00171-7.
  • Lambert, P. J., & Naughton, H. T. (2009). The equal absolute sacrifice principle revisited. Journal of Economic Surveys, 23. doi: 10.1111/j.1467-6419.2008.00564.x.
  • Lerner, A. P. (1944). The economics of control. London: Macmillan.
  • Levitt, S. D., & List, A. J. (2007). What do laboratory experiments measuring social preferences reveal about the real world? Journal of Economic Perspectives, 21. doi: 10.1257/jep.21.2.153.
  • McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52. doi: 10.2307/1913469.
  • Mitra, T., & Ok, E. A. (1996). Personal income taxation and the principle of equal sacrifice revisited. International Economic Review, 37. doi:10.2307/2527317.
  • Okun, A. M. (1975). Equality and efficiency. Washington, DC: Brookings Institution.
  • Pirttilä, J., & Uusitalo, R. (2007). Leaky bucket in the real world: estimating inequality aversion using survey data. CESifo Working Paper, 2026.
  • Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32.
  • Richter, W. F. (1983). From ability to pay to concept of equal sacrifice. Journal of Public Economics, 20.
  • Robinson, S. (1976). A note on the u hypothesis relating income inequality and economic development. American Economic Review, 66.
  • Sarabia, J. M., & Azpitarte, F. (2012). On the relationship between objective and subjective inequality indices and the natural rate of subjective inequality. ECINEQ Working Papers, 248
  • Sen, A. (1973). On economic inequality. Oxford: Clarendon Press.
  • Sen, A. (1978). Ethical measurement of inequality: some difficulties. In: W. Krelle & A/F. Shorrocks (Eds.). Personal income distribution. Amsterdam: North-Holland.
  • Sheshinski, E. (1972). Relation between a social welfare function and the Gini index of income inequality. Journal of Economic Theory, 4. doi: 10.1016/0022-0531(72)90167-6.
  • Singh S. K., & Maddala, G. S. (1976). A function of size distribution of income. Econometrica, 44.
  • Stern, N. (1977). The marginal valuation of income. In: M. J. Artis & A. R. Nobay (Eds.). Essays in economic analysis. Cambridge: Cambridge University Press.
  • Tuominen, E. (2015). Reversal of the Kuznets curve. Study on the inequality-development relation using top income shares data. WIDER Working Paper 2015/036.
  • Vitaliano, D. F. (1977). The tax sacrifice rules under alternative definitions of progressivity. Public Finance Quarterly, 5.
  • Ware, R., & Lad, F. (2003). Approximating the distribution for sums of products of normal variables. Technical Report. The University of Queensland.
  • World Bank (2017). World development indicators 2017. Washington, DC: World Bank.
  • Young, H. P. (1987). Progressive taxation and the equal sacrifice principle. Journal of Public Economics, 32. doi: 10.1016/0047-2727(87)90012-0.
  • Young, H. P. (1990). Progressive taxation and equal sacrifice. American Economic Review, 80.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171600775

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.