Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 12 | nr 2 | 145--169
Tytuł artykułu

Returns to Education and Gender Wage Gap Across Quantiles in Italy

Treść / Zawartość
Warianty tytułu
Języki publikacji
Various quantile regression approaches are implemented to analyze the characteristics of Italian data on earnings in the tails. A changing coefficients pattern across quantiles shows increasing returns to education along the wage distribution. A quantile decomposition approach shows that higher education grants higher return at all quantiles, thus implying additional, non-linear returns to higher education throughout the entire pattern of the earning distribution. Wage gender gap displays a decreasing pattern across quantiles, and it does not disappear at the higher quantiles. The southern workers penalty decreases across quantiles as well for highly educated workers. (original abstract)
Opis fizyczny
  • Universita degli Studi di Napoli "Federico II" Napoli, Italia
  • [1] Amemiya T., (1982), Two stage least absolute deviations estimators, Econometrica 50, 689-711.
  • [2] Bettio F., Villa P., (1999), To what extent does it pay to be better educated? Education and the work market for women in Italy, South European Society and Policy 4, 150-170.
  • [3] Blinder A., (1973), Wage discrimination: reduced form and structural estimates, Journal of Human Resources 8, 436-455.
  • [4] Blundell R., Dearden L., Sianesi B., (2001), Estimating the returns to education: models, methods and results, Center for Economics of Education, London.
  • [5] Blundell R., Dearden L., Sianesi B., (2005), Evaluating the effect of education on earnings: models, methods and results from National Child Development Survey, Journal of the Royal Statistical Society A 168, 473-512.
  • [6] Brunello G., Comi S., Lucifora C., (2001), The Returns to Education in Italy: A New Look at the Evidence, [in:] The Returns to Education in Europe, [ed.:] Harmon C., Walker I. and Westergard-Nielsen N., Cheltenham (UK) Edward Elgar.
  • [7] Brunello G., Miniaci R., (1999), The Economics Returns to Schooling for Italian Men. An Evaluation Based on Instrumental Variables, Labour Economics 6, 509-519.
  • [8] Buchinsky M., (1998), The dynamics of changes in the female wage distribution in the USA: a quantile regression approach, Journal of Applied Econometrics 13, 1-30.
  • [9] Cannari L., D'Alessio G., (1998), Il rendimento dell'istruzione: alcuni problemi di stima,Temi di Discussione 253, Banca d'Italia.
  • [10] Card D., (2001), Estimating the return to schooling: progress on some persistent econometric Problems, Econometrica 69, 1127-60.
  • [11] Card D., DiNardo J., (2002), Skill biased technological change and rising wage inequality: some problems and puzzles, Journal of Labor Economics 20, 733-783.
  • [12] Chernozhukov V., Hansen C., (2005), An IV model of quantile treatment effect, Econometrica 73, 245-261.
  • [13] Chernozhukov V., Hansen C., (2006), Instrumental quantile regression inference for structural and treatment effect models, Journal of Econometrics 132, 491-525.
  • [14] Chernozhukov V., Hansen C., Jansson M., (2007), Inference approaches for instrumental variable quantile regression, Economic Letters 95, 272-277.
  • [15] Chernozhukov V., Hansen C., (2008), Instrumental quantile regression: A robust inference approach, Journal of Econometrics 142, 379-398.
  • [16] Chernozhukov V., Fernandez-Val I., Melly B., (2013), Inference on counterfactual distributions, Econometrica 81, 2205-2268.
  • [17] Ciccone A., Cignano F., Cipollone P., (2006), The private and social return to schooling in Italy, Temi di Discussione 569, Banca d'Italia.
  • [18] Colussi A., (1997), Una analisi cross section del tasso di rendimento dell'istruzione in Italia, Politica Economica 13.
  • [19] Dickinson M., Harmon C., (2011), Economic returns to education: what we know, what we don't know and where we are going-some brief pointer, Economic of Education Review 30, 1118-1122.
  • [20] European Comission (2019), The gender pay gap situation in the EU. gender-equality/equal-pay/gender-pay-gap-situation-eu_en.
  • [21] Flabbi L., (1999), Returns to Schooling in Italy: OLS, IV and Gender Differences, Universitá Bocconi Working Paper.
  • [22] Frölich M., Melly B., (2008), Unconditional quantile treatment effect under endogeneity, Insitute for the Study of Labor (IZA) 3288 at http://ideas.repec. org/p/iza/izadps/dp3288.html.
  • [23] Frölich M., Melly B., (2010), Estimation of quantile treatment effects with Stata, Stata Journal 10, 423-457.
  • [24] Furno M., (2014), Returns to education and gender gap, International Review of Applied Economics 28, 628-649.
  • [25] Giustinelli P., (2004), Quantile Regression Evidence on Italian Education Returns, Rivista di Politica Economica XI-XII, 49-100.
  • [26] Harmon C., Oosterbeek H., Walker I., (2003), The returns to education: microeconomics, Journal of Economic Surveys 17, 115-155.
  • [27] Koenker R., (2005), Quantile regression, Cambridge University Press.
  • [28] Kwak D., (2010), Instrumental variable quantile regression method for endogenous treatment effect, unpublished manuscript.
  • [29] Meghir C., Palme M., (2000), Estimating the Effect of Schooling on Earnings Using a Social Experiment, IFS 99/12.
  • [30] Melly B., (2006), Estimation of counterfactual distributions using quantile regression w.p. University of St. Gallen.
  • [31] Mincer J., (1974), Schooling, Experience and Earnings, New York: Columbia University Press.
  • [32] Machado J., Mata J., (2005), Counterfactual decomposition of changes in wage distributions using quantile regression, Journal of Applied Econometrics 20, 445- 465.
  • [33] Oaxaca R., (1973), Male-female wage differentials in urban labor markets, International Economic Review 14, 693-709.
  • [34] OECD, (2019), Education at a Glance 2019 OECD Indicators. https://www.
  • [35] OECD, (2015), PISA 2015 country note for Italy. PISA-2015-Italy.pdf.
  • [36] Souabni S., (2013), MMSEL: Stata module to simulate (counterfactual) distributions from quantile regressions, Statistical Software Components S457441, Boston College Department of Economics.
  • [37] Sulis G., (2007), Gender wage differentials in Italy: a structural estimation approach, Crenos working paper 15.
  • [38] Zizza R., (2013), The gender wage gap in Italy, Questioni di Economia e Finanza 172, Banca d'Italia.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.