Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 12 | nr 2 | 195--225
Tytuł artykułu

Modelling Recovery Rate for Incomplete Defaults Using Time Varying Predictors

Treść / Zawartość
Warianty tytułu
Języki publikacji
The Internal Rating Based (IRB) approach requires that financial institutions estimate the Loss Given Default (LGD) parameter not only based on closed defaults but also considering partial recoveries from incomplete workouts. This is one of the key issues in preparing bias-free samples, as there is a need to estimate the remaining part of the recovery for incomplete defaults before including them in the modeling process. In this paper, a new approach is proposed, where parametric and non-parametric methods are presented to estimate the remaining part of the recovery for incomplete defaults, in predefined intervals concerning sample selection bias. Additionally it is shown that recoveries are driven by different set of characteristics when default is aging. As an example, a study of major Polish bank is presented, where regression tree outperforms other methods in the secured products segment, and fractional regression provides the best results for non-secured ones. (original abstract)
Opis fizyczny
  • University of Lodz, Poland
  • [1] Anolli M., Beccalli E., Giordani T., (2013), Retail Credit Risk Management, Palgrave MacMillan, New York, DOI: 10.1057/9781137006769.
  • [2] Baesens B., Roesch D., Scheule H., (2016), Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS, John Wiley & Sons.
  • [3] Basel Committee on Banking Supervision (2005), Studies on the validation of Internal Rating System, available at: htm.
  • [4] Basel Committee on Banking Supervision (2017), Guidelines on PD estimation, LGD estimation and the treatment of defaulted exposures (EBA/GL/2017/16), available at: Guidelines+on+PD+and+LGD+estimation+ EBA-GL-2017-16 .pdf.
  • [5] Bastos J., (2010), Forecasting bank loans loss-given-default, Journal of Banking and Finance 34(10), 2510-2517, DOI: 10.1016/j.jbankfin.2010.04.011.
  • [6] Belotti T., Crook J., (2007), Modelling and predicting loss given default for credit cards, Quantitative Financial Risk Management Centre 28(1), 171-182.
  • [7] Belotti T., Crook J., (2009), Loss Given Default models for UK retail credit cards, CRC Working Paper 09/1.
  • [8] Brown I., (2012), Basel II Compliant Credit Risk Modelling, University of Southampton, Southampton.
  • [9] Chalupka R., Kopecsni J., (2008), Modelling Bank Loan LGD of Corporate and SME Segments, IES Working Paper.
  • [10] Dermine J., Neto de Carvahlo C., (2006), Bank Loan Losses-Given-Default: a Case Study, Journal of Banking and Finance 30(4), 1219-1243.
  • [11] Gurtler M., Hibbeln M., (2013), Improvements in loss given default forecasts for bank loans, Journal of Banking and Finance 37, 2354-2366, DOI: 10.2139/ssrn.1757714.
  • [12] Hastie T., Tibshirani R., Friedman J., (2008), The Elements of Statistical Learning, Springer, DOI: 10.1007/978-0-387-84858-7.
  • [13] Huang X., Oosterlee C., (2011), Generalized beta regression models for random loss given default, The Journal of Credit Risk 7(4), DOI: 10.21314/JCR.2011.150.
  • [14] Izzi L., Oricchio G., Vitale L., (2012), Basel III Credit Rating Systems, Palgrave MacMillan, New York, DOI: 10.1057/9780230361188.
  • [15] Jarrow R., Lando D., Turnbull S., (1997), Markov model for the term structure of credit risk spreads, Review of Financial Studies 10, 481-523.
  • [16] Liu W., Xin J., (2014), Modeling Fractional Outcomes with SAS, SAS Paper 1304-2014.
  • [17] Loterman G., Brown I., Martens D., Mues C. and Baesens B., (2012), Benchmarking Regression Algorithms for Loss Given Default Modelling, International Journal of Forecasting 28(1), 161-170.
  • [18] Luo X., Shevchenko P., (2013), Markov chain Monte Carlo estimation of default and recovery: dependent via the latent systematic factor, Journal of Credit Risk 9(3), 41-76.
  • [19] Nielsen M., Roth S., (2017), Basel IV: The Next Generation of Risk Weighted Assets, John Wiley & Sons.
  • [20] Papke L., Woolridge J., (1996), Econometric method for fractional response variable with an application to 401(K) plan participation rates, Journal of Applied Econometrics, DOI: 10.1002/(SICI)1099-1255(199611)11:63.0.CO;2-1.
  • [21] Papouskova M., Hajek P., (2019), Two-stage consumer credit risk modelling using heterogeneous ensemble learning, Decision Support Systems 118, 33-45, DOI: 10.1016/j.dss.2019.01.002.
  • [22] Qi M., Zhao X., (2011), Comparison of modeling methods for Loss Given Default, Journal of Banking and Finance 35(11), 2842-2855, DOI: 10.1016/j.jbankfin.2011.03.011.
  • [23] Rapisarda G., Echeverry D., (2013), A Non-parametric Approach to Incorporating Incomplete Workouts Into Loss Given Default Estimates, Journal of Credit Risk 9(2), DOI: 10.21314/JCR.2013.159
  • [24] Regulation (EU) No 575/2013 of the European Parliament and of the council of 26 June 2013 on prudential requirements for credit institutions and investment firms and amending Regulation (EU) No 648/2012.
  • [25] Stoyanov S., (2009), Application LGD Model Development, Credit Scoring and Credit Control XI Conference, available at: https: // 03/Application-LGD-Model-Development-Nistico-and-Stoyanov.pdf.
  • [26] Tobback E., Martens D., Van Gestel T., Baesens B., (2014), Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state, Journal of the Operational Research Society 65(3), DOI: 10.1057/jors.2013.158.
  • [27] Tong E., Mues C., Thomas L., (2013), A zero-adjusted gamma model for mortgage loss given default, International Journal of Forecasting 29(4), 548-562, DOI: 10.1016/j.ijforecast.2013.03.003.
  • [28] Van Berkel A., Siddiqi N., (2012), Building Loss Given Default Scorecard Using Weight of Evidence Bins, SAS Global Forum, available at: https://support.
  • [29] Yao X., Crook J., Andreeva G., (2017), Enhancing two-stage modelling methodology for loss given default with support vector machines, European Journal of Operational Research 263(2), 679-689, DOI: 10.1016/j.ejor.2017.05.017.
  • [30] Zięba P., (2017), Methods of Extension of Databases Used to Estimate LGD Parameter, Studia i Prace Kolegium Zarzadzania i Finansów 150, 31-55.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.