PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | z. nr 63 | 286--302
Tytuł artykułu

Regional Household Poverty and Mobility Analysis - a Transition Probability Approach

Autorzy
Warianty tytułu
Regionalna analiza ubóstwa i mobilności gospodarstw domowych - podejście oparte na prawdopodobieństwie przejścia
Języki publikacji
EN
Abstrakty
Głównym celem niniejszego artykułu była próba estymacji i analizy macierzy prawdopodobieństw przejścia, określonej dla wszystkich szesnastu regionów Polski (województwa, poziom NUTS-2). Analiza została przeprowadzona pod kątem przejść pomiędzy sześcioma klasami wydatków (w ujęciu per capita oraz na jednostkę ekwiwalentną), ze szczególnym uwzględnieniem sfery ubóstwa. Okres analizy obejmował dwa lata: rok 2015 oraz 2016. Podstawowe pytanie dotyczyło tego, w których regionach prawdopodobieństwo pozostawania w biedzie jest największe oraz jaki jest ogólny poziom mobilności pomiędzy klasami wydatków. Do badania została wykorzystana dwuletnia podpróba panelowa oparta o nieidentyfikowalne dane jednostkowe Głównego Urzędu Statystycznego, pochodzące z badania budżetów gospodarstw domowych. W badaniu wykorzystano zarówno wydatki per capita, jak i wydatki na jednostkę ekwiwalentną, aby wziąć pod uwagę różnice w wielkości i strukturze demograficznej gospodarstw domowych. Elementy macierzy przejścia były szacowane za pomocą klasycznego estymatora największej wiarygodności. Analiza została uzupełniona ogólną oceną mobilności za pomocą indeksów mobilności Shorrocksa i Bartholomewa oraz oceną poziomu nierówności wydatków za pomocą indeksu Giniego. Wyniki pokazały, że roczne prawdopodobieństwa pozostawania w biedzie różnią się w zależności od regionu i są mniejsze dla wydatków na jednostkę ekwiwalentną. Największe prawdopodobieństwo zaobserwowano dla województwa podkarpackiego (wydatki per capita) oraz opolskiego (wydatki na jednostkę ekwiwalentną). Najniższym prawdopodobieństwem odznaczało się województwo kujawsko-pomorskie (wydatki per capita) oraz małopolskie (wydatki na jednostkę ekwiwalentną). Najwyższym ogólnym poziomem mobilności charakteryzowało się województwo małopolskie (dla obu kategorii wydatków). (abstrakt oryginalny)
EN
The main objective of this paper was to estimate and analyse transition-probability matrices for all 16 of Poland's NUTS-2 level regions (voivodeship level). The analysis is conducted in terms of the transitions among six expenditure classes (per capita and per equivalent unit), focusing on poverty classes. The period of analysis was two years: 2015 and 2016. The basic aim was to identify both those regions in which the probability of staying in poverty was the highest and the general level of mobility among expenditure classes. The study uses a two-year panel sub-sample of unidentified unit data from the Central Statistical Office (CSO), specifically the data concerning household budget surveys. To account for differences in household size and demographic structure, the study used expenditures per capita and expenditures per equivalent unit simultaneously. To estimate the elements of the transition matrices, a classic maximum-likelihood estimator was used. The analysis used Shorrocks' and Bartholomew's mobility indices to assess the general mobility level and the Gini index to assess the inequality level. The results show that the one-year probability of staying in the same poverty class varies among regions and is lower for expenditures per equivalent units. The highest probabilities were identified in Podkarpackie (expenditures per capita) and Opolskie (expenditures per equivalent unit), and the lowest probabilities in Kujawsko-Pomorskie (expenditures per capita) and Małopolskie (expenditures per equivalent unit). The highest level of general mobility was noted in Małopolskie, for both categories of expenditures. (original abstract)
Rocznik
Numer
Strony
286--302
Opis fizyczny
Twórcy
  • University of Lodz, Poland
Bibliografia
  • Alkire, S., Apablaza, M. (2016). Multidimensional poverty in Europe 2006-2012: Illustrating a methodology. OPHI Working Paper, 74, 1-22.
  • Atkinson, A. B. (1987). On the measurement of poverty. Econometrica, 55(4), 749-764. DOI: 10.2307/1911028.
  • Atkinson, A. B. (2019). Measuring poverty around the world. New Jersey: Princeton University Press. DOI: 10.1515/9780691191898.
  • Bartholomew, D. J. (1973). Stochastic Models for Social Processes. London: J. Wiley and Sons. DOI: 10.1002/bimj.19740160813.
  • Bieńkuńska, A. (2013). Multidimensional poverty and social isolation in Poland. Working Paper, 20, 1-14.
  • Corak, M. (2013). Income inequality, equality of opportunity, and intergenerational mobility. Journal of Economic Perspectives, 27(3), 79-102. DOI: 10.1257/jep.27.3.79.
  • CSO (2016). Household budget survey in 2015. Warsaw: Central Statistical Office.
  • CSO (2017). Household budget survey in 2016. Warsaw: Central Statistical Office.
  • CSO (2019). Local data bank. Retrieved from: https://bdl.stat.gov.pl/BDL/start (2019.6.06).
  • Czajkowski, A. (2009). Forecasting income distributions of households in Poland on the basis of Markov chains. Acta Universitatis Lodziensis, 225, 245-256.
  • Edigarian, E., Kościelniak, P., Trojak, M. (2013). Analiza zróżnicowania rozwoju ekonomicznego województw i powiatów oparta na łańcuchach Markowa. In: M. Trojak, T. Tokarski (Eds.), Statystyczna analiza przestrzennego zróżnicowania rozwoju ekonomicznego i społecznego Polski (pp. 111-128). Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
  • Eurobarometer (2010). Poverty and social exclusion. Special Eurobarometer, 321. Retrieved from: https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_321_ en.pdf (2019.06.06).
  • Haughton, J., Khandker, S. R. (2009). Handbook on poverty and inequality. Washington D.C.: World Bank. DOI: 10.1596/978-0-8213-7613-3.
  • Górajski, M., Serwa, D., Wośko, Z. (2016). Measuring expected time to default under stress conditions for corporate loans. NBP Working Paper, 237, 1-36.
  • Jędrzejczak, A. (2011). Metody analizy rozkładów dochodów i ich koncentracji. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
  • Kordos, J. (1973). Metody analizy i prognozowania rozkładów płac i dochodów ludności. Warszawa: Państwowe Wydawnictwo Ekonomiczne.
  • Kot, S. M. (2000). Ekonometryczne modele dobrobytu. Warszawa-Kraków: Wydawnictwo Naukowe PWN.
  • Kot, S. M. (2004). Rozkłady dochodów, nierówności i dobrobyt w Polsce. In: S. M. Kot, A. Malawski, A. Węgrzecki (Eds.), Dobrobyt społeczny, nierówności i sprawiedliwość dystrybutywna (pp. 248-280). Kraków: Wydawnictwo Akademii Ekonomicznej w Krakowie.
  • Narayan, A., Van der Weide, R., Cojocaru, A., Lakner, C., Redaelli, S., Mahler, D. G., Thewissen, S. (2018). Fair progress?: Economic mobility across generations around the world. Equity and development. Washington D.C.: World Bank. DOI: 10.1596/978-1- 4648-1210-1.
  • Panek, T. (2014). Ubóstwo i wykluczenie społeczne. In: T. Panek (Ed.), Statystyka społeczna (pp. 195-239). Warszawa: Polskie Wydawnictwo Ekonomiczne.
  • Quah, D. T. (1995a). Aggregate and regional disaggregate fluctuations. Centre for Economic Performance Discussion Paper No. 275.
  • Quah, D. T. (1995b). Empirics for economic growth and convergence. Centre for Economic Performance Discussion Paper No. 253.
  • Rey, S. (2014). Rank-based Markov chains for regional income distributions dynamics. Journal of Geographical Systems, 16(2), 115-137. DOI: 10.1007/s10109-013-0189-0.
  • Sen, A. K. (1981). Poverty and famines: An essay on entitlement and deprivation. Oxford: Clarendon Press. DOI: 10.5040/9781474220156.ch-005.
  • Shorrocks, A. F. (1976). Income mobility and the Markov assumption. The Economic Journal, 86(343), 566-578. DOI: 10.2307/2230800.
  • Shorrocks, A. F. (1978). The measurement of mobility. Econometrica, 46(5), 1013-1024. DOI: 10.2307/1911433.
  • World Bank (2005). Introduction to poverty analysis. World Bank Institute. Retrieved from: http://siteresources.worldbank.org/PGLP/Resources/PovertyManual.pdf (2019.06.15).
  • World Bank (2018). Poverty. Retrieved from: https://www.worldbank.org/en/topic/poverty (2019.08.18).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171603495

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.