Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 28 | nr 2 | 98--110
Tytuł artykułu

Don't fight the tape! Technical Analysis Momentum and Contrarian Signals as Common Cognitive Biases

Warianty tytułu
Języki publikacji
Purpose: Stock market participants use technical analysis to seek trends in stock price charts despite its doubtful efficiency. We tested whether technical analysis signals represent typical and common cognitive biases associated with the continuation or reversal of the trend.

Methodology: We compared investors' opinions about the predictive power of technical analysis signals grouped into five conditions: real technical analysis signals associated with trend continuation (real momentum signals) or trend reversal (real contrarian signals), fake momentum or fake contrarian signals, and fluctuation signals.

Findings: Investors assigned larger predictive power to real and fake signals associated with trend continuation than to signals associated with trend reversal. Fake signals, which represented cognitive biases, elicited similar predictions about trend continuation or reversal to real technical analysis signals.

Originality: Market players assess momentum signals to have greater predictive power than contrarian signals and neutral signals to have the least predictive power. These results are independent of whether technical analysis signals were well-known to investors or made up by experimenters. The hardwired propensity of our brains to detect patterns combined with the non-natural environment of the stock market creates the illusion of expertise that is not easy to dispel. (original abstract)
Opis fizyczny
  • Warsaw University of Life Sciences - SGGW, Poland
  • SWPS University of Social Sciences and Humanities, Warsaw, Poland
  • Kozminski University
  • Kozminski University
  • Bar-Hillel, M. and Wagenaar, W.A. (1991). The Perception of Randomness. Advances in Applied Mathematics, 12(4), 428-454.
  • Barret, J.L. (2000). Exploring the natural foundations of religion. Trends in Cognitive Sciences, 4(1), 29-34.
  • De Bondt, W.F.M. (1993). Betting on trends: Intuitive forecasts of financial risk and return. International Journal of Forecasting, 9, 355-371.
  • Epstein, R.A. (1977). The Theory of Gambling and Statistical Logic. London, UK: Academic Press.
  • Fama, E.F. (1991). Efficient Capital Markets: II. The Journal of Finance, 46(5), 1575-1617.
  • Gilovich, T., Vallone, R., and Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17(3), 295-314.
  • Hahn, U. and Warren, P.A. (2009) Perceptions of Randomness: Why Three Heads Are Better Than Four. Psychological Review, 116(2), 454-461.
  • Henrich, J. (2015). The Secret of Our Success How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton, Princeton University Press.
  • Kubińska, E., Czupryna, M., Markiewicz, Ł., and Czekaj, J. (2018). Technical analysis gives you courage, but not money - on the relationship between technical analysis usage, overconfidence and investment performance. Argumenta Oeconomica, 40(1), 317-344.
  • List, J.A. (2003). Neoclassical Theory Versus Prospect Theory: Evidence from the Marketplace. Econometrica, 72(2), 615-625.
  • Lo, A.W. and Hasanhodzic, J. (2010). The Evolution of Technical Analysis: Financial Prediction from Babylonian Tablets to Bloomberg Terminals. Hoboken, NJ: Wiley.
  • Martin, C.F., Bhui, R., Bossaerts, P., Matsuzawa, T., and Camerer, C. (2014). Chimpanzee choice rates in competitive games match equilibrium game theory predictions. Scientific Reports, 4(5182), 1-6.
  • Malkiel, B.G. and Fama, E.F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. .
  • Menkhoff, L. (2010). The Use of Technical Analysis by Fund Managers: International Evidence. Journal of Banking & Finance, 34(11), 2573-2586.
  • Miller, J.B. and Sanjurjo, A. (2019). Is It a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest? IGIER Working Paper No. 548.
  • Quattrone, G.A. and Tversky, A. (1995). Self-deception and the voter's illusion. In: J. Elster (ed.), The multiple self, 35-58. New York, NY: Cambridge University Press.
  • Roney, C.J.R. and Trick, L.M. (2009). Sympathetic magic and perceptions of randomness: The hot hand versus the gambler's fallacy. Thinking & Reasoning, 15(2), 197-210.
  • Scheibehenne, B., Wilke, A., and Todd, P.M. (2011). Expectations of clumpy resources influence predictions of sequential events. Evolution and Human Behavior, 32(5), 326-333.
  • Shafir, E., Simonson, I., and Tversky, A. (1993). Reason-based choice. Cognition, 49(1-2), 11-36.
  • Tversky, A. and Kahneman, D. (1971) Belief in the law of small numbers. Psychological Bulletin, 76(2), 105-110.
  • Tyszka, T., Markiewicz, Ł., Kubińska, E., Gawryluk, K., and Zielonka, P. (2017). A belief in trend reversal requires access to cognitive resources. Journal of Cognitive Psychology, 29(2), 1-15. https://10.1080/20445911.2016.1245195.
  • Tyszka, T., Zielonka, P., Dacey, R., and Sawicki, P. (2008). Perception of randomness and predicting uncertain events. Thinking & Reasoning, 14(1), 83-110. .
  • Wilke, A. and Clark Barrett, H. (2009). The hot hand phenomenon as a cognitive adaptation to clumped resources. Evolution and Human Behavior, 30(3), 161-169,
  • Your Chinese Astrology (2019). 2019 & 2020 Chinese Baby Gender Prediction Chart. (11.11.2019).
  • Zielonka, P. (2004). Technical analysis as the representation of typical cognitive biases. International Review of Financial Analysis, 13, 217-225.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.