Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 5 | nr 2 | 103--117
Tytuł artykułu

Forecasting the Yield Curve for Poland

Warianty tytułu
Języki publikacji
This paper evaluates the accuracy of forecasts for Polish interest rates of various maturities. We apply the traditional autoregressive Diebold-Li framework as well as its extension, in which the dynamics of latent fac- tors are explained with machine learning techniques. Our findings are fourfold. Firstly, they show that all methods have failed to predict the declining trend of interest rates. Secondly, they suggest that the dynamic affine models have not been able to systematically outperform standard univariate time series models. Thirdly, they indicate that the relative performance of the analyzed models has depended on yield maturity and forecast horizon. Finally, they demonstrate that, in comparison to the traditional time series models, machine learning techniques have not systematically improved the accuracy of forecasts.(original abstract)
Opis fizyczny
  • Warsaw School of Economics, Poland
  • Breiman, Leo. 2001. Random forests"Machine learning" 45 (1):5{32.
  • Christensen, Jens H. E. and Glenn D. Rudebusch. 2015. \Estimating Shadow-Rate Term Structure Models with Near-Zero Yields."Journal of Financial Econometrics" 13 (2):226{259.
  • Diebold, Francis X. Canlin Li. 2006. \Forecasting the term structure of government bond yields."Journal of Econometrics" 130 (2):337{364.
  • Diebold, Francis X., Glenn D. Rudebusch, Boragan S. Aruoba. 2006. \The macroeconomy and the yield curve: a dynamic latent factor approach."Journal of Econometrics" 131 (1-2):309{338.
  • Geyer, Alois and Richard Mader. 1999. \Estimation of the term structure of interest rates- A parametric approach." Working Papers 37, Oesterreichische Nationalbank. "Econometric Research in Finance" _ Vol. 5 _ No. 2 117
  • Gurkaynak, Refet S. and Jonathan H. Wright. 2012. \Macroeconomics and the Term Structure." Journal of Economic Literature 50 (2):331{67.
  • Hladkova, Hana Jarmila Radova. 2012. \Term structure modelling by using Nelson-Siegel model." European Financial and Accounting Journal 7 (2):36{55.
  • Jung, Carsten, Henrike Mueller, Simone Pedemonte, Simone Plances, and Oliver Thew. 019. Machine learning in UK _nancial services. Bank of England and Financial Conduct Authority.
  • Marciniak, Marek. 2006. \Yield curve estimation at the National Bank of Poland."Bank i Kredyt" 10:52{74.
  • Martin, Daniel, Barnab_as Poczos, Burton Holli_eld. 2018. \Machine learning-aided modeling of xed income instruments." .
  • Nelson, Charles R. and Andrew F. Siegel. 1987. \Parsimonious Modeling of Yield Curves."The Journal of Business" 60 (4):473{89.
  • Rubaszek, Micha l. 2016. \Forecasting the yield curve with macroeconomic variables. "Econometric Research in Finance" 1 (1):1{21.
  • Summers, Lawrence H. 2014. \U.S. Economic Prospects: Secular Stagnation, Hysteresis, nd the Zero Lower Bound."Business Economics" 49 (2):65{73.
  • Svensson, Lars E.O. 1994. \Estimating and Interpreting Forward Interest Rates: Sweden 992 - 1994." NBER Working Papers 4871, National Bureau of Economic Research, Inc.
  • Yu, William Eric Zivot. 2010. \Forecasting the term structures of treasury and corporate yields: Dynamic nelson-siegel models evaluation."International Journal of Forecasting", Forthcoming .
  • Zoricic, Davor Marko Badurina. 2013. \Nelson-Siegel Yield Curve Model Estimation And The Yield Curve Trading In The Croatian Financial Market." UTMS Journal of Economics" 4 (2):113{125.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.