PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 55 | 41
Tytuł artykułu

Time consistent equilibria in dynamic models with recursive payoffs and behavioral discounting

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove existence of time consistent equilibria in a wide class of dynamic models with re-cursive payoffs and generalized discounting involving both behavioral and normative applica-tions. Our generalized Bellman equation method identifies and separates both: recursive andstrategic aspects of the equilibrium problem and allows to precisely determine the sufficientassumptions on preferences and stochastic transition to establish existence. In particularwe show existence of minimal state space stationary Markov equilibrium (a time-consistentsolution) in a deterministic model of consumption-saving with beta-delta discounting andits generalized versions involving magnitude effects, non-additive payoffs, semi-hyperbolic orhyperbolic discounting (over possibly unbounded state and unbounded above reward space).We also provide an equilibrium approximation method for a hyperbolic discounting model. (original abstract)
Słowa kluczowe
Rocznik
Numer
Strony
41
Opis fizyczny
Twórcy
  • University of Zielona Góra, Poland
  • Arizona State University, USA
  • Warsaw School of Economics, Poland
Bibliografia
  • Ahn, D. S., R. Iijima, Y. Le Yaouanq, T. Sarver (2019): Behavioural characterizations of naivete for time-inconsistent preferences, Review of Economic Studies, 86, 2319-2355.
  • Ahn, D. S., R. Iijima, and T. Sarver (2020): Naivete about temptation and self-control: Foundations for recursive naive quasi-hyperbolic discounting, Journal of Economic Theory,189.
  • Ameriks, J., A. Caplin, J. Leahy, T. Tyler (2007): Measuring self-control problems, American Economic Review, 97.
  • Andreoni, J., C. Sprenger (2012): Estimating time preferences from convex budgets, American Economic Review, 102, 3333-56.
  • Angeletos, G.-M., D. Laibson, A. Repetto, J. Tobacman, and S. Weinberg (2001): The hyperbolic consumption model: calibration, simulation, and empirical evaluation, Journal of Economic Perspectives, 15, 47-68.
  • Arrow, K. J., M. L. Cropper, C. Gollier, B. Groom, G. M. Heal, R. G. Newell, W. D. Nordhaus, R. S. Pindyck, W. A. Pizer, P. R. Portney, T. Sterner, R. S. J.Tol, M. L. Weitzman (2014): Should governments use a declining discount rate in project analysis? Review of Environmental Economics and Policy, 8, 145-163.
  • Augenblick, N., M. Niederle, C. Sprenger (2015): Working over time: dynamic inconsistency in real effort tasks, Quarterly Journal of Economics, 130, 1067-1115.
  • Balbus, L. (2020): On recursive utilities with non-affine aggregator and conditional certainty equivalent, Economic Theory, 70, 551-577.
  • Balbus, L., A. Jaśkiewicz, A. S. Nowak (2015): Stochastic bequest games, Games and Economic Behavior, 90, 247-256.
  • Balbus, L., A. Jaśkiewicz, A. S. Nowak (2020): Equilibria in altruistic economic growth models, Dynamic Games and Applications, 10, 1-18.
  • Balbus, L., K. Reffett, L. Woźny (2015): Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers, International Journal of Game Theory, 44, 83-112.
  • Balbus, L., K. Reffett, L. Woźny (2018): On uniqueness of time-consistent Markov policies for quasi-hyperbolic consumers under uncertainty, Journal of Economic Theory, 176, 293-310.
  • Balbus, L., L. Woźny (2016): A strategic dynamic programming method for studying short-memory equilibria of stochastic games with uncountable number of states, Dynamic Games and Applications, 6, 187-208.
  • Baucells, M., F. H. Heukamp (2012): Probability and time trade-off, Management Science, 58, 831-842.
  • Bäuerle, N., A. Jaśkiewicz (2018): Stochastic optimal growth model with risk sensitive preferences, Journal of Economic Theory, 173, 181-200.
  • Becker, R. A. (2012): Optimal growth with heterogeneous agents and the twisted turnpike: An example, International Journal of Economic Theory, 8, 27-47.
  • Bernheim B. D., D. Ray, S. Yeltekin (2015): Poverty and self-control, Econometrica,83, 1877-1911.
  • Beshears J., Choi James J., Laibson D., B.C. Madrian, (2018): Behavioral household finance, in: Handbook of Behavioral Economics - Foundations and Applications 1, vol. 1, ed. by D. Bernheim, D. Laibson, S. DellaVigna, Elsevier.
  • Beshears, J., J. J. Choi, C. Clayton, C. Harris, D. Laibson, B. C. Madrian (2020): Optimal illiquidity, NBER Working Papers 27459.
  • Bich, P., J.-P. Drugeon, L. Morhaim (2018): On temporal aggregators and dynamic programming, Economic Theory, 66, 787-817.
  • Bryan, G., D. Karlan, S. Nelson (2010): Commitment devices, Annual Review of Economics, 2, 671-698.
  • Cao D., I. Werning (2018): Saving and dissaving with hyperbolic discounting, Econometrica, 86, 805-857.
  • Caplin A., J. Leahy (2006): The recursive approach to time inconsistency, Journal of Economic Theory, 131, 134-156.
  • Casaburi L., R. Macchiavello (2019): Demand and supply of infrequent payments as a commitment device: evidence from Kenya, American Economic Review, 109, 523-55.
  • Ceteman, D., F. Feng, and C. Urgen (2019): Contracting with non-exponential discounting: moral hazard and dynamic inconsistency, MS.
  • Chade, H., P. Prokopovych, and L. Smith (2008): Repeated games with present-biased preferences, Journal of Economic Theory, 139, 157-175.
  • Chambers, C. P. and F. Echenique (2018): On multiple discount rates, Econometrica, 86,1325-1346.
  • Chan, M. K. (2017): Welfare dependence and self-control: an empirical analysis, Review of Economic Studies, 84, 1379-1423.
  • Chatterjee, S. and B. Eyigungor (2016): Continuous Markov equilibria with quasi-geometric discounting, Journal of Economic Theory, 163, 467-494.
  • Cohen, J., K. M. Ericson, D. Laibson, J. M. White (2020): Measuring time preferences, Journal of Economic Literature, 58, 299-347.
  • Dalton, C. M., G. Gowrisankaran, R. J. Town (2020): Salience, myopia, and complex dynamic incentives: evidence from Medicare Part D, Review of Economic Studies,87, 822-869.
  • Dasgupta, P. (2008): Discounting climate change, Journal of Risk and Uncertainty, 37,141-169.
  • Dekel, E. and B. L. Lipman (2012): Costly self-control and random self-indulgence, Econometrica, 80, 1271-1302.
  • Drugeon J.-P., T. Ha-Huy (2018): A not so myopic axiomatization of discounting, Documents de recherche 18-02, Centre d'Etudes des Politiques Economiques (EPEE), Universite d'Evry Val d'Essonne.
  • Drugeon J.-P., B. Wigniolle (2020): On Markovian collective choice with heterogeneous quasi-hyperbolic discounting, Economic Theory, DOI: 10.1007/s00199-020-01291-z.
  • Duflo, E., M. Kremer, and J. Robinson (2011): Nudging farmers to use fertilizer: theory and experimental evidence from Kenya, American Economic Review, 101, 2350-90.
  • Dziewulski, P. (2018): Revealed time preference, Games and Economic Behavior, 112, 67 -77.
  • Ebert, S., W. Wei, and X. Y. Zhou (2020): Weighted discounting - On group diversity, time-inconsistency, and consequences for investment, Journal of Economic Theory, 189,105089.
  • Echenique, F., T. Imai, and K. Saito (2016): Testable implications of models of intertemporal choice: exponential discounting and its generalizations, MS.
  • Epstein, L. G., J. A. Hynes (1983): The rate of time preference and dynamic economic analysis, Journal of Political Economy, 91, 611-635.
  • Epstein, L. G. and S. E. Zin (1989): Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework, Econometrica, 57, 937-969.
  • Ericson, K. M., D. Laibson (2019): Intertemporal choice, in: Handbook of Behavioral Economics - Foundations and Applications 2, vol. 2, ed. by D. Bernheim, D. Laibson, S. DellaVigna, Elsevier.
  • Fishburn P. C., A. Rubinstein (1982): Time preference, International Economic Review, 23, 677-694.
  • Frederick, S., G. Loewenstein, T. O'Donoghue (2002): Time discounting and time preference: a critical review, Journal of Economic Literature, 40, 351-401.
  • Fudenberg D., D. K. Levine, (2006): A dual-self model of impulse control, American Economic Review, 96, 1449-1476.
  • Fudenberg D., D. K. Levine, (2012): Timing and self-control, Econometrica, 80, 1-42.
  • Galperti S., B. Strulovici (2017): A theory of intergenerational altruism, Econometrica, 85, 1175-1218.
  • Gerlagh, R. and M. Liski (2018): Consistent climate policies, Journal of the European Economic Association, 16, 1-44.
  • Gine, X., D. Karlan, J. Zinman (2010): Put your money where your butt is: a com-mitment contract for smoking cessation, American Economic Journal: Applied Economics,2, 213-35.
  • Gottleib, D. and X. Zhang (2020): Long-term contracting with time-inconsistent agents, Econometrica, forthcoming.
  • Gul F., W. Pesendorfer, (2001): Temptation and self-control, Econometrica, 69,1403-1435.
  • Gul F., W. Pesendorfer, (2004): Self-control and the theory of consumption, Econometrica, 72, 119-158.
  • Gul F., W. Pesendorfer, (2005): The Revealed Preference Theory of Changing Tastes, Review of Economic Studies, 72, 429-448.
  • Halec M., P. Yared (2019): Fiscal rules and discretion under limited commitment, Technical Report, NBER Working Paper, 25463.
  • Halevy Y., (2008): Strotz meets Allais: diminishing impatience and the certainty effect, American Economic Review, 98, 1145-1162.
  • Hammond, P. J. (1976): Changing tastes and coherent dynamic choice, Review of Economic Studies, 43, 159-173.
  • Harris C., D. Laibson, (2001): Dynamic choices of hyperbolic consumers, Econometrica, 69, 935-57.
  • Harris C., D. Laibson, (2013): Instantaneous gratification, Quarterly Journal of Economics, 128, 205-248.
  • Harstad, B. (2020): Technology and time inconsistency, Journal of Political Economy, 128,2653-2689.
  • Heidues, P., P. Strack (2019): Identifying present-bias from the timing of choices, MS.
  • Ioannou, C. A., J. Sadeh (2016): Time preferences and risk aversion: tests on domain differences, Journal of Risk and Uncertainty, 53, 29-54.
  • Iverson, T., L. Karp (2020): Carbon taxes and climate commitment with non-constant time preference, Review of Economic Studies.
  • Jackson, M. O., L. Yariv (2015): Collective dynamic choice: the necessity of time inconsistency, American Economic Journal: Microeconomics, 7, 150-178.
  • Jensen, M. K. (2020): A dual self approach to the computation of time-consistent equilibria, MS.
  • Karlan, D., M. McConnell, S. Mullainathan, J. Zinman (2016): Getting to the top of mind: how reminders increase saving, Management Science, 62, 3393-3411.
  • Koopmans, T. C. (1960): Stationary ordinal utility and impatience, Econometrica, 28, 287-309.
  • Kreps, D. M., E. L. Porteus (1978): Temporal resolution of uncertainty and dynamic choice theory, Econometrica, 46, 185-200.
  • Krusell, P., B. Kuruscu, A.A. Smith Jr., (2010): Temptation and taxation, Econometrica, 78, 2063-2084.
  • Krusell P., A. Smith (2003): Consumption-savings decisions with quasi-geometric discounting, Econometrica, 71, 365-375.
  • Kuchler T., M. Pagel (2020): Sticking to your plan: The role of present bias for credit card paydown, Journal of Financial Economics.
  • Laibson D. (1997): Golden eggs and hyperbolic discounting, Quarterly Journal of Economics,112, 443-77.
  • Laibson, D., A. Repetto, J. Tobacman (2007): Estimating discount functions with consumption choices over the lifecycle, NBER Working Papers 13314.
  • Le Van C., Y. Vailakis (2005): Recursive utility and optimal growth with bounded or unbounded returns, Journal of Economic Theory, 123, 187-209.
  • Lizzeri A., L. Yariv (2017): Collective self-control, American Economic Journal: Microeconomics, 9, 213-44.
  • Loewenstein G., D. Prelec (1992): Anomalies in intertemporal choice: evidence and an interpretation, The Quarterly Journal of Economics, 107, 573-597.
  • Mahajan, A., C. Michel, A. Tarozzi (2020): Identification of time-inconsistent models: the case of insecticide nets, Technical Report, NBER Working Paper, 27198.
  • Maliar, L. and S. Maliar (2016): Ruling out multiplicity of smooth equilibria in dynamic games: a hyperbolic discounting example, Dynamic Games and Applications, 6, 243-261.
  • Martins-da Rocha V. F., Y. Vailakis (2010): Existence and uniqueness of a fixed point for local contractions, Econometrica, 78, 1127-1141.
  • Matkowski J., A. Nowak (2011): On discounted dynamic programming with unbounded returns, Economic Theory, 46, 455-474.
  • Montiel Olea J.L., T. Strzalecki, (2014): Axiomatization and measurement of quasi-hyperbolic discounting, The Quarterly Journal of Economics, 129, 1449-1499.
  • Noor J. (2009): Hyperbolic discounting and the standard model: Eliciting discount functions, Journal of Economic Theory, 144, 2077 - 2083.
  • Noor J., (2011): Temptation and revealed preference, Econometrica, 79, 601-644.
  • Noor J., N. Takeoka, (2020): Constrained optimal discounting, MS.
  • Noor J., N. Takeoka, (2020): Optimal discounting, MS.
  • Obara I., J. Park, (2017): Repeated games with general discounting, Journal of Eco-nomic Theory, 172, 348 - 375.
  • Peleg B., M.E. Yaari (1973): On the existence of a consistent course of action when tastes are changing, Review of Economic Studies, 40, 391-401.
  • Phelps, E., R. Pollak (1968): On second best national savings and game equilibrium growth, Review of Economic Studies, 35, 195-199.
  • Pollak, R. A. (1968): Consistent planning, Review of Economic Studies, 35, 201-208.
  • Ramsey F. P., (1928): A mathematical theory of saving, The Economic Journal, 38, 543-559.
  • Ray, D., N. Vellodi, R. Wang (2017): Backward discounting, MS.
  • Rincon-Zapatero J. P., C. Rodriguez-Palmero, (2009): Corrigendum to (Existence and uniqueness of solutions to the Bellman equation in the unbounded case, Econometrica, 71,5,1519-1555,2003), Econometrica, 77, 1, 317-318, 2009.
  • Saito K., (2009): A relationship between risk and time preferences, Discussion Papers 1477, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Samuelson, P. A. (1937): A note on measurement of utility, Review of Economic Studies, 4,155-161.
  • Serfozo R., (1982): Convergence of Lebesgue integrals with varying measures, Sankhya: The Indian Journal of Statistics, 44, 380-402.
  • Strotz R.H., (1956): Myopia and inconsistency in dynamic utility maximization, Review of Economic Studies, 23, 165-180.
  • Topkis, D. M. (1998): Super modularity and complementarity, Frontiers of economic research, Princeton University Press.
  • Wakai K. (2008): A model of utility smoothing, Econometrica, 76, 137-153.
  • Weil P., (1993): Precautionary savings and the permanent income hypothesis, The Review of Economic Studies, 60, 367-383.
  • Young, E. R. (2007): Generalized quasi-geometric discounting, Economics Letters , 96, 343-350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171607887

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.