Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 1 (10) | 4--23
Tytuł artykułu

Conversion Attribution: What Is Missed by the Advertising Industry? The OPEC Model and Its Consequences for Media Mix Modeling

Treść / Zawartość
Warianty tytułu
Języki publikacji
Marketers are currently focused on proper budget allocation to maximize ROI from online advertising. They use conversion attribution models assessing the impact of specifi c media channels (display, search engine ads, social media, etc.). Marketers use the data gathered from paid, owned, and earned media and do not take into consideration customer activities in category media, which are covered by the OPEC (owned, paid, earned, category) media model that the author of this paper proposes. The aim of this article is to provide a comprehensive review of the scientifi c literature related to the topic of conversion attribution for the period of 2010-2019 and to present the theoretical implications of not including the data from category media in marketers' analyses of conversion attribution. The results of the review and the analysis provide information about the development of the subject, the popularity of particular conversion attribution models, the ideas of how to overcome obstacles that result from data being absent from analyses. Also, a direction for further research on online customer behavior is presented. (original abstract)
Słowa kluczowe
Opis fizyczny
  • University of Warsaw
  • 1. Abhishek, V., Despotakis, S., & Ravi, R. (2017). Multi-channel attribution: The blind spot of online advertising. SSRN Electronic Journal.
  • 2. Abhishek, V., Hosanagar, K., & Fader, P. (2012). Media exposure through the funnel: A model of multi-stage attribution. SSRN Electronic Journal.
  • 3. A ilawadi, K.L., & Farris, P.W. (2017). Managing multi- and omni-channel distribution: Metrics and research directions. Journal of Retailing, 93(1). 120-135.
  • 4. Anderl, E., Becker, I., von Wangenheim, F., & Schumann, J.H. (2014). Mapping the customer journey: A graph-based framework for online attribution modeling. SSRN Electronic Journal.
  • 5. Anderl, E., Becker, I., von Wangenheim, F., & Schumann, J.H. (2016). Mapping the customer journey: Lessons learned from graph-based online attribution modeling. International Journal of Research in Marketing, 33(3), 457-474.
  • 6. Barajas, J., Akella, R., Holtan, M., & Flores, A. (2015). Experimental designs and estimation for online display advertising attribution in marketplaces. Marketing Science, 35(3), 465-483.
  • 7. Berman, R. (2018). Beyond the last touch: Attribution in online advertising. SSRN Electronic Journal.
  • 8. Brookman, J., Rouge, P., Alva, A., & Yeung, C. (2017). Cross-device tracking: Measurement and disclosures. In Proceedings on Privacy Enhancing Technologies (pp. 133-148).
  • 9. Chae, I., Stephen, A.T., Bart, Y., & Yao, D. (2017). Spillover effects in seeded word-of-mouth marketing campaigns. Marketing Science, 36(1), 89-104.
  • 10. Chaff ey, D., & Patron, M (2012). From web analytics to digital marketing optimization: Increasing the commercial value of digital analytics. Journal of Direct, Data and Digital Marketing Practice, 14, 30-45.
  • 11. Choi, H., Mela, C.F., Balseiro, S., & Leary, A. (2019). Online display advertising markets: A literature review and future directions (Columbia Business School Research Paper No. 18-1).
  • 12. Dalessandro, B., Hook, R., Perlich, C., & Provost, F. (2015). Evaluating and optimizing online advertising: Forget the click, but there are good proxies. Big Data, 3(2), 90-102.
  • 13. Dalessandro, B., Perlich, C., Stitelman, O., & Provost, F. (2012). Causally motivated attribution for online advertising. In ADKDD '12: Proceedings of the Sixth International Workshop on Data Mining for Online Advertising and Internet Economy (pp. 1-7). New York: Association for Computing Machinery.
  • 14. Danaher, P.J., & van Heerde, H.J. (2018). Delusion in attribution: Caveats in using attribution for multimedia budget allocation. Journal of Marketing Research, 55(5), 667-685.
  • 15. de Hann, E., Wiesel, T., & Pauwels, K. (2016). The eff ectiveness of diff erent forms of online advertising for purchase conversion in a multiple-channel attribution framework. International Journal of Research in Marketing, 33(3), 491-507.
  • 16. Diemert, E, Meynet, J., Galland, P., & Lefortier, D. (2017). Attribution modeling increases efficiency of bidding in display advertising. In ADKDD'17: Proceedings of the ADKDD'17, Association for Computing Machinery (pp. 1-6). New York.
  • 17. Du, R., Zhong Y., Nair, H., Cui, B., & Shou, R. (2019). Causally driven incremental multi touch attribution using a recurrent neural network. ADKDD'19 Conference, Anchorage.
  • 18. eMarketer. (2018). Five charts: The state of attribution. Retrieved on 3 January 2020 from ve-charts-the-state-of-attribution
  • 19. eMarketer. (2019). How data science is changing marketing attribution. Retrieved on 18 April 2019 from
  • 20. eMarketer. (2019a). Fewer than 10 of U.S. marketers think their company's attribution knowledge is excellent. Retrieved on 18 April 2019 from
  • 21. Engel, J.F. Kollat, D., & Blackwell, R.D. (1968, 1978). Consumer behavior. Hinsdale: The Dryden Press.
  • 22. Garman, E. (2019). Discover the difference between earned, owned & paid media. Retrieved on 2 January 2020 from erence-explained/
  • 23. Geyik, S.C., Saxena, A., & Dasdan, A. (2014). Multi-touch attribution based budget allocation in online advertising. In ADKDD'14: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising (pp. 1-9). New York: Association for Computing Machinery.
  • 24. Ghose, A., & Todri, V. (2016). Towards a digital attribution model: Measuring the impact of display advertising on online consumer behavior. MIS Quarterly, 40(4), 889-910.
  • 25. Golan, G.J., Manor, I., & Arceneaux, P. (2019). Mediated public diplomacy redefi ned: Foreign stakeholder engagement via paid, earned, shared, and owned media. American Behavioral Scientist, 63(12), 1665-1683.
  • 26. Google. (2020). Attribution modeling. Data-drive attribution methodology. Retrieved on 18 April 2020 from
  • 27. Grewal, D., Bart, Y., Spann, M., & Zubscek, P.P. (2016). Mobile advertising: A framework and research agenda. Journal of Interactive Marketing, 34, 3-14.
  • 28. Hanssens, D.M., & Pauwels, K.H. (2016). Demonstrating the value of marketing. Journal of Marketing, 80(6), 173-190.
  • 29. Harrison, F. (2013). Digging deeper down into the empirical generalization of brand recall adding owned and earned media to paid-media touchpoints. Journal of Advertising Research, 53(2), 181-185.
  • 30. Howard, J.A., & Sheth, J.N. (1969). The theory of buyer behavior. New York: John Wilesy&Sons.
  • 31. IAB. (2016). Konsumpcja treści online a marketing. Warszawa: IAB.
  • 32. Jayawardane, C.H.W., Halgamuge, S.K., & Kayande, U. (2015). Attributing conversion credit in an online environment: An analysis and classifi cation. In Proceedings - 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 68-73). Bali.
  • 33. Ji, W., & Wang, X. (2017). Additional multi-touch attribution for online advertising. In AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artifi cial Intelligence. AAAI Press.
  • 34. Ji, W., Wang, X., & Zhang, D. (2016). A probabilistic multi-touch attribution model for online advertising. In CIKM'16: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 1373-1382). New York: Association for Computing Machinery.
  • 35. Kaatz, C., Brock, C., & Figura, L. (2019). Are you still online or are you already mobile? - Predicting the path to successful conversions across diff erent devices. Journal of Retailing and Consumer Services, 50, 10-21.
  • 36. Kacprzak, A. (2017). Marketing doświadczeń w Internecie. Warszawa: C.H. Beck.
  • 37. Kadyrov, T., & Ignatov, D.I. (2019). Attribution of customers actions based on machine learning approach. CEUR Workshop Proceedings, 2479, 77-88.
  • 38. Kakalejčík, L., Bucko, J., & Vejačka, M. (2019). Diff erences in buyer journey between high- and low-value customers of e-commerce business. Journal of Theoretical and Applied Electronic Commerce Research, 14(2), 47-58.
  • 39. Kannan P.K., & Li, A. (2017). Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, 34(1), 22-45.
  • 40. Kannan, P.K., Reinartz, W., & Verhoef, P.C. (2016). The path to purchase and attribution modeling: Introduction to special section. International Journal of Research in Marketing, 33(3), 449-456.
  • 41. Karande, C., Mehta, A., & Srikant, R. (2013). Optimizing budget constrained spend in search advertising. In WSDM'13: Proceedings of the sixth ACM international conference on Web search and data mining (pp. 697-706).New York: Association for Computing Machinery.
  • 42. Karimi, S., Papamichail, K.N., & Holland, C.P. (2015). The eff ect of prior knowledge and decision-making style on the online purchase decision-making process: A typology of consumer shopping behavior. Decision Support Systems, 77, 137-147.
  • 43. Kireyev, P., Pauwels, K., & Gupta, S. (2016). Do display ads infl uence search? Attribution and dynamics in online advertising. International Journal of Research in Marketing, 33(3), 475-490.
  • 44. Klapdor, S., Anderl, E., Schumann, J.H., & von Wangenheim, F. (2015). How to use multichannel behavior to predict online conversions, behavior patterns across online channels inform strategies for turning users into paying customers. Journal of Advertising Research, 55(4), 433-442.
  • 45. Lecinski, J. (2011). Winning the Zero Moment of Truth. Google.
  • 46. Lee, G. (2010). Death of 'last click wins': Media attribution and the expanding use of media data. Journal of Direct, Data and Digital Marketing Practice, 12, 16-26.
  • 47. Lemon, K.N., & Verhoef, P.C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96.
  • 48. Li, A., & Kannan, P.K. (2014). Attributing conversions in a multichannel online marketing environment: An empirical model and a fi eld experiment. Journal of Marketing Research, 51(1), 40-56.
  • 49. Li, A., Kannan, P.K., Viswanathan, S., & Pani, A. (2016). Attribution strategies and return on keyword investment in paid search advertising. Marketing Science, 35(6), 831-998.
  • 50. Li, N., Arava, S.K., Dong, C., Yan, Z., & Pani, A. (2018). Deep neural net with attention for multi-channel multitouch attribution. KDD Conference, London.
  • 51. Li, Y., Xie, Y., & Zheng, E. (2017). Modeling multi-channel advertising attribution across competitors. SSRN Electronic Journal.
  • 52. Liu, Y., Laguna, J., Wright, M., & He, H. (2014). Media mix modeling - A Monte Carlo simulation study. Journal of Marketing Analytics, 2, 173-186.
  • 53. Lovett, M.J., & Staelin, R. (2016). The role of paid, earned, and owned media in building entertainment brands, reminding, informing, and enhancing enjoyment. Marketing Science, 35(1), 1-200.
  • 54. Lu, S., & Yang, S. (2017). Investigating the spillover eff ect of keyword market entry in sponsored search advertising. Marketing Science, 36(6), 1-23.
  • 55. Mahboobi, S.H., Usta, M., & Bagheri, S.R. (2018). Coalition game theory in attribution modeling. Measuring what matters at scale. Journal of Advertising Research, 58(4), 414-422.
  • 56. Molla, R. (2018). Advertisers will spend $40 billion more on internet ads than on TV ads this year. Retrieved on 28 December 2018 from online-internet-advertisers-outspend-tv-ads-advertisers-social-video-mobile-40-billion-2018
  • 57. Nicosia, F.M. (1966). Consumer decision processes: Marketing and advertising implications. Englewood Cliff s, New York: Prentice Hall.
  • 58. Nisar, T.M., & Yeung, M. (2018). Attribution modeling in digital advertising an empirical investigation of the impact of digital sales channels. Journal of Advertising Research, 58(4), 399-413.
  • 59. Nottorf, F. (2013). Multi-channel attribution modeling on user journeys. Communications in Computer and Information Science, 456, 107-125.
  • 60. Nottorf, F., & Funk, B. (2013). A cross-industry analysis of the spillover eff ect in paid search advertising. Electronic Markets, 23, 205-216.
  • 61. Palmatier, R.W., Houston, M.B., & Hulland, J. (2018). Review articles: Purpose, process, and structure. Journal of the Academy of Marketing Science, 46(1), 1-5.
  • 62. Ren, K., Fang, Y., Zhang, W., Liu, S., Li J., Zhang, Y., Yu, Y., & Wan, J. (2018). Learning multi-touch conversion attribution with dual-attention mechanisms for online advertising. In CIKM '18: Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 1433-1442). New York: Association for Computing Machinery.
  • 63. Rosales, R., Cheng, H., & Manavoglu, E. (2012). Post-click conversion modeling and analysis for non-guaranteed delivery display advertising. In WSDM '12: Proceedings of the fi fth ACM international conference on Web search and data mining (pp. 293-302). New York: Association for Computing Machinery.
  • 64. Rutz, O.J., & Bucklin, R.E. (2011). From generic to branded: A model of spillover in paid search advertising. Journal of Marketing Research, 48(1), 87-102.
  • 65. Sahni, N.S. (2016). Advertising spillovers: Evidence from online field experiments and implications for returns on advertising. Journal of Marketing Research, 53(4), 459-478.
  • 66. Shao, X., & Li, L. (2011). Data-driven multi-touch attribution model. In KDD '11: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 258-264). New York: Association for Computing Machinery.
  • 67. Shultz, C.D., & Dellnitz, A. (2018). Attribution modeling in online advertising. In K.C.C. Yang (Ed.), Multi-platform advertising strategies in the global marketplace (pp. 226-249). Hershey: IGI Global.
  • 68. Sikdar, S., & Hooker, G. (2019). A multivariate hidden semi-markov model of customer-multichannel engagement. SSRN Electronic Journal.
  • 69. Singal, R., Besbes, O., Desir, A., Goyal, V., & Iyengar, G. (2019). Shapley meets uniform: An axiomatic framework for attribution in online advertising. SSRN Electronic Journal.
  • 70. Srinivasan, S., Rutz, O.J, & Pauwels, K. (2016). Paths to and off purchase: Quantifying the impact of traditional marketing and online consumer activity. Journal of the Academic Marketing Science, 44(4), 440-453.
  • 71. Srinivasan, S., Vanhuele, M., & Pauwels, K. (2010). Mindset metrics in market response models: An integrative approach. Journal of Marketing Research, 48, 672-684.
  • 72. Sugiyama, K., & Andree, T. (2010). The Dentsu way: Secrets of cross switch marketing from the world's most innovative advertising agency. New York: McGraw Hill Professional.
  • 73. Wedel, M., & Kannan, P.K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121.
  • 74. Wiesel, T., Pauwels, K., & Arts, J. (2011). Practice prize paper-Marketing's profi t impact: quantifying online and off -line funnel progression. Marketing Science, 30(4), 604-611.
  • 75. Wijaya, B. (2011). The development of hierarchy of eff ects model in advertising. International Research of Business Studies, 5(1), 73-85.
  • 76. Winter, P., & Alpar, P. (2019). Eff ects of search engine advertising on user clicks, conversions, and basket choice. Electronic Markets.
  • 77. Woof, D.A., & Anderson, J.M. (2015). Time-weighted multi-touch attribution and channel relevance in the customer journey to online purchase. Journal of Statistical Theory and Practice, 9(2), 227-249.
  • 78. Xie, Q., Neill, M.S., & Schauster, E. (2018). Paid, earned, shared and owned media from the perspective of advertising and public relations agencies: Comparing China and the United States. International Journal of Strategic Communication, 12, 160-179.
  • 79. Xu, L., Duan, J.A., & Whinston, A. (2014). Path to purchase: A mutually exciting point process model for online advertising and conversion. Management Science, 60(6), 1392-1412.
  • 80. Yadagiri, M.M., Saini, S.K., & Sinha, R. (2015). A non-parametric approach to the multi-channel attribution problem. In Proceedings, Part I, of the 16th International Conference on Web Information Systems Engineering (pp. 338-352). Berlin: Springer-Verlag.
  • 81. Zantedeshi, D., McDonnel, E., & Bradlow, E.T. (2017). Measuring multichannel advertising response. Management Science, 63(8), 2397-2771.
  • 82. Zaremba, A. (2019). Conversion attribution in the online environment - Identifi cation of crucial decision path stages. Theory and case study. Journal of Marketing and Market Studies, 26(4), 15-19.
  • 83. Zhang, Y., Wei, Y., & Ren, J. (2014). Multi-touch attribution in online advertising with survival theory. In ICDM '14: Proceedings of the 2014 IEEE International Conference on Data Mining (pp. 687-696). Washington: IEEE Computer Society.
  • 84. Zhao, K., Mahboobi, S.H., & Bagher, S.R. (2018). Shapley value methods for attribution modeling in online advertising. Retrieved on 18 April 2020 from
  • 85. Zhao, K., Mahboobi, S.H., & Bagheri, S.R. (2018). Revenue-based attribution modeling for online advertising. International Journal of Market Research, 61(2), 195-209.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.