PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 23 | nr 4 | 87--108
Tytuł artykułu

Tracing the Spatial Patterns of Innovation Determinants in Regional Economic Performance

Warianty tytułu
Określenie przestrzennych wzorców determinant innowacji w regionalnych wynikach gospodarczych
Języki publikacji
EN
Abstrakty
Niniejszy artykuł analizuje rolę czynników innowacyjności w rozwoju regionalnym 261 regionów UE w latach 2009-2012. Analiza przestrzenna wskazała, że regionalna innowacyjność, a dalej rozwój regionalny, zależą nie tylko od położenia geograficznego regionu, ale i jego sąsiadów. Pociąga to za sobą szczególnie poważne konsekwencje dla Europy Środkowo-Wschodniej. Za pomocą przestrzennego modelu panelowego Durbina ze stałymi efektami grupowymi (dla krajów), oceniliśmy wpływ czynników innowacji i ich przestrzennych odpowiedników na regionalne wyniki ekonomiczne. Pokazał on, że regiony czerpią korzyści ekonomiczne ze swoich efektów lokalizacyjnych pod względem kapitału społecznego, jednak w przypadku wydatków na badania i rozwój ujawniono efekt konkurencji między regionami. (abstrakt oryginalny)
EN
In this paper, we investigate innovation factors and their role in regional economic performance for a sample of 261 EU NUTS 2 regions over the period 2009-2012. In our study, we identify regions with spillover as well as drain effects of innovation factors on economic performance. The spatial analysis indicates that both regional innovativeness and regional development are strongly determined by the region's location and "neighbourhood", with severe consequences for Central and Eastern Europe. We assessed the impact of innovation factors and their spatial counterparts on economic performance using a spatial Durbin panel model. The model is designed to test the existence and strength of the country-effect of innovativeness on the level of regional economic status. This allows for controlling the country-specific socio-economic factors, without reducing the number of degrees of freedom. Our model shows that regions benefit economically from their locational spillovers in terms of social capital. However, the decomposition of R&D expenditures revealed competition effect between internal R&D and external technology acquisition, favouring in-house over outsourced research. (original abstract)
Rocznik
Tom
23
Numer
Strony
87--108
Opis fizyczny
Twórcy
  • University of Lodz, Poland
  • University of Lodz, Poland
Bibliografia
  • Anselin, L. (1998), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.
  • Anselin, L., Le Gallo, J., Jayet, H. (2008), Spatial panel econometrics, [in:] L. Mátyás, P. Sevestre (eds.) The econometrics of panel data, fundamentals and recent developments in theory and practice, 3rd ed., Kluwer, Dordrecht. https://doi.org/10.1007/978-3-540-75892-1_19
  • Anselin, L., Varga, A., Acs, Z. (1997), Local Geographic Spillovers between University Research and High Technology Innovations, "Journal of Urban Economics", 42 (3), pp. 422-448. https://doi.org/10.1006/juec.1997.2032
  • Bilbao-Osorio, B., Rodríguez-Pose, A. (2004), From R&D to Innovation and Economic Growth in the EU, "Growth and Change", 35 (4), pp. 434-455. https://doi.org/10.1111/j.1468-2257.2004.00256.x
  • Boschma, R. (2005), Proximity and innovation - a critical assessment, "Regional Studies", 39 (1), pp. 61-74. https://doi.org/10.1080/0034340052000320887
  • Brouwer, E., Kleinknecht, A. (1999), Innovative output, and a firm's propensity to patent. An exploration of CIS micro data, "Research Policy", 28 (6), pp. 615-624. https://doi.org/10.1016/S0048-7333(99)00003-7
  • Cabrer-Borrás, B., Serran-Domingo, G. (2007), Innovation and R&D spillover effects in Spanish regions: A spatial approach, "Research Policy", 36, pp. 1357-1371. https://doi.org/10.1016/j.respol.2007.04.012
  • Caragliu, A., Nijkamp, P. (2012), The impact of regional absorptive capacity on spatial knowledge spillovers: the Cohen and Levinthal model revisited, "Applied Economics", 44, pp. 1363-1374. https://doi.org/10.1080/00036846.2010.539549
  • Cliff, A.D., Ord, J.K. (1981), Spatial processes: models and applications, Taylor & Francis, London.
  • Corrado, C., Haskel J., Jona-Lasinio, C. (2017), Knowledge Spillovers, ICT and Productivity Growth, "Oxford Bulletin of Economics and Statistics", 79 (4), pp. 592-618. https://doi.org/10.1111/obes.12171
  • Corrado, C., Hulten, Ch., Sichel, D. (2009), Intangible capital and U.S. economic growth, "The Review of Income and Wealth", 55 (3), pp. 661-685. https://doi.org/10.1111/j.1475-4991.2009.00343.x
  • Crescenzi, R., Rodrígue-Pose, A., Storper, M. (2007), The territorial dynamics of innovation: a Europe - United States comparative analysis, "Journal of Economic Geography", 7 (6), pp. 673-709. https://doi.org/10.1093/jeg/lbm030
  • Dominicis, L. de, Florax, R.J.G.M., Groot, H.L.F. de (2013), Regional clusters of innovative activity in Europe: are social capital and geographical proximity key determinants?, "Applied Economics", 45 (17), pp. 2325-2335. https://doi.org/10.1080/0003 6846.2012.663474
  • Educational attainment statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Educational_attainment_statistics (accessed: 23.02.2020).
  • Elhorst, J.P. (2014), Spatial Panel Models, [in:] M. Fischer, P. Nijkamp (eds.) Handbook of Regional Science, Berlin, Springer. https://doi.org/10.1007/978-3-642-23430-9_86
  • Elhorst, J.P., Gross M., Tereanu E. (2018), Spillovers in space and time: where spatial econometrics and Global VAR models meet, European, Central Bank, Frankfurt, Working Paper Series, No. 2134.
  • European Innovation Scoreboard 2016. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF /source-31233711 (accessed: 23.02.2020).
  • Eurostat Regional Database. https://ec.europa.eu/eurostat/web/regions/data/database (accessed: 23.02.2020).
  • Frascati Manual (2002). https://www.oecd-ilibrary.org/science-and-technology/frascati-manual-2002_9789264199040-en (accessed: 23.02.2020).
  • Global Innovation Index 2016 report. http://www.wipo.int/edocs/pubdocs/en/wipo _pub_gii_2016.pdf (accessed: 23.02.2020).
  • Global Innovation Index 2017 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii-full-report-2017.pdf (accessed: 23.02.2020).
  • Global Innovation Index 2018 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii_2018-report-new.pdf (accessed: 23.02.2020).
  • Global Innovation Index 2019 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/GII2019-keyfinding-E-Web3.pdf (accessed: 23.02.2020).
  • Gonçalves, E., Almaida, E.S. (2009), Innovation and Spatial Knowledge Spillovers: Evidence from Brazilian Patent Data, "Regional Studies", 43 (4), pp. 513-528. https://doi.org/10.1080/00343400701874131
  • Granovetter, M. (2005), The impact of social structure on economic outcomes, "Journal of Economic Perspectives", 19 (1), pp. 33-50. https://doi.org/10.1257/0895330053147958
  • Griliches, Z. (1979), Issues in assessing the contribution of research and development to productivity growth, "Bell Journal of Economics", 10 (1), pp. 92-116. https://doi.org/10.2307/3003321
  • Halleck, V.S., Elhorst J.P. (2016), A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors, "Regional Science and Urban Economics", 60, pp. 85-95. https://doi.org/10.1016/j.regsciurbeco.2016.07.002
  • Jaffe, A.B. (1989), Real effects of academic research, "American Economic Review", 79 (5), pp. 957-970.
  • Kelejian, H.H., Prucha, I.R. (1998), A Generalised Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, "The Journal of Real Estate Finance and Economics", 17 (1), pp. 99-121.
  • Kelejian, H.H., Prucha, I.R. (2010), Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, "Journal of Econometrics", 157 (1), pp. 53-67. https://doi.org/10.1016/j.jeconom.2009.10.025
  • LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Taylor & Francis Group, New York. https://doi.org/10.1201/9781420064254
  • Moran, P.A.P. (1948), The Interpretation of Statistical Maps, "Journal of the Royal Statistical Society", Series B (Methodological), 10 (2), pp. 243-251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
  • Olejnik, J., Olejnik, A. (2020), QML estimation with non-summable weight matrices, "Journal of Geographical Systems", 22, pp. 469-495. https://doi.org/10.1007/s10109-020-00326-2
  • Ord, K. (1975), Estimation Methods for Models of Spatial Interaction, "Journal of the American Statistical Association", 70, pp. 120-126. https://doi.org/10.1080/016214 59.1975.10480272
  • Regional Innovation Scoreboard 2016 report. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF /source-31233711 (accessed: 23.02.2020).
  • Regional Innovation Scoreboard 2017 report. https://op.europa.eu/en/publication-detail/-/publication/ce38bc9d-5562-11e7-a5ca-01aa75ed71a1/language-en/format-PDF /source-99532255 (accessed: 23.02.2020).
  • Regional Innovation Scoreboard 2019 report. https://ec.europa.eu/growth/sites/growth/files/ris2019.pdf (accessed: 23.02.2020)
  • Shi, W., Lee, L.F. (2017), Spatial dynamic panel data model with interactive fixed effects, "Journal of Econometrics", 197, pp. 323-347. https://doi.org/10.1016/j.jeconom.2016.12.001
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171609375

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.