Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 29 | 7--17
Tytuł artykułu

On Computer-Assisted Proving the Existence of Periodic and Bounded Orbits

Warianty tytułu
Języki publikacji
We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.(original abstract)
Opis fizyczny
  • Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University
  • Appel K., Haken W., Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977), 429-490.
  • Appel K., Haken W., Koch J., Every planar map is four colorable. Part II: Reducibility, Illinois J. Math. 21 (1977), 491-567.
  • Bánhelyi B., Csendes T., Garay B.M., Hatvani L., A computer-assisted proof of 3- chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7 (2008), 843-867.
  • CAPA,
  • CAPD,
  • Capinski M.J.,Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (2012), 1723-1753.
  • CHomP,
  • Eckmann J.-P., Koch H., Wittwer P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc. 47 (1984), 1-121.
  • Galias Z., Computer assisted proof of chaos in the Muthuswamy-Chua memristor circuit, Nonlinear Theory Appl. IEICE 5 (2014), 309-319.
  • Galias Z., Tucker W., Numerical study of coexisting attractors for the Hénon map, Int. J. Bifurcation Chaos 23 (2013), no. 7, 1330025, 18 pp.
  • Gidea M., Zgliczynski P., Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), 33-58.
  • Hales T.C., A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065-1185.
  • Hales T.C. et al., A formal proof of the Kepler conjecture, preprint (2015), http://
  • Hass J., Schlafly R., Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459-515.
  • Hassard B., Zhang J., Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal. 25 (1994), 179-196.
  • Hastings S.P., Troy W.C., A shooting approach to the Lorenz equations, Bull. Amer. Math. Soc. 27 (1992), 128-131.
  • Hickey T., Ju Q., van Emden M.H., Interval arithmetic: From principles to implementation, J. ACM 48 (2001), 1038-1068.
  • Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459-489.
  • Kapela T., Simó C., Computer assisted proofs for non-symmetric planar choreographies and for stability of the Eight, Nonlinearity 20 (2007), 1241-1255.
  • Kapela T., Zgliczynski P., The existence of simple choreographies for the N-body problem - a computer assisted proof, Nonlinearity 16 (2003), 1899-1918.
  • Lam C.W.H., The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305-318.
  • Lam C.W.H., Thiel L., Swiercz S., The non-existence of finite projective planes of order 10, Canad. J. Math. 41 (1989), 1117-1123.
  • Lanford O.E., III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427-434.
  • Lanford O.E., III, Computer-assisted proofs in analysis, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1385-1394.
  • Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.
  • Mann A.L., A complete proof of the Robbins conjecture, preprint (2003).
  • McCune W., Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), 263- 276.
  • Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72.
  • Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof. II: Details, Math. Comp. 67 (1998), 1023-1046.
  • Mischaikow K., Mrozek M., Szymczak A., Chaos in the Lorenz equations: A computer assisted proof. III: Classical parameter values, J. Differential Equations 169 (2001), 17-56.
  • Mischaikow K., Zgliczynski P., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), 255-288.
  • Mizar project,
  • Moeckel R., A computer-assisted proof of Saari's conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), 3105-3117.
  • Mrozek M., Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990),149-178.
  • Mrozek M., From the theorem of Wazewski to computer assisted proofs in dynamics, Banach Center Publ. 34 (1995), 105-120.
  • Mrozek M., Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32 (1996), 83-104.
  • Mrozek M., Index pairs algorithms, Found. Comput. Math. 6 (2006), 457-493.
  • Mrozek M., Srzednicki R., Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion, Found. Comput. Math. 10 (2010), 191-220.
  • Mrozek M., Srzednicki R., Weilandt F., A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348-1386.
  • Mrozek M., Zelawski M., Heteroclinic connections in the Kuramoto-Sivashinsky equations, Reliab. Comput. 3 (1997), 277-285.
  • Robertson N., Sanders D., Seymour P., Thomas R., The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.
  • Tucker W., The Lorenz attractor exists, C.R. Math. Acad. Sci. Paris 328 (1999), 1197- 1202.
  • Tucker W., A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math. 2 (2002), 53-117.
  • Wikipedia, Pentium FDIV bug,
  • Wilczak D., Chaos in the Kuramoto-Sivashinsky equations - a computer assisted proof, J. Differential Equations 194 (2003), 433-459.
  • Wilczak D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495-535.
  • Wilczak D., Zgliczynski P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem - a computer assisted proof, Comm. Math. Phys. 234 (2003), 37-75.
  • Wilczak D., Zgliczynski P., Period doubling in the Rössler system - a computer assisted proof, Found. Comput. Math. 9 (2009), 611-649.
  • Wilczak D., Zgliczynski P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J. Appl. Dyn. Syst. 8 (2009), 1632-1663.
  • Zgliczynski P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), 243-252.
  • Zgliczynski P., Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - a computer assisted proof, Found. Comput. Math. 4 (2004), 157-185.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.