Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | nr 15/2 | 5--15
Tytuł artykułu

Spatio-Temporal Model of Extreme Rainfall Data in the Province of South Sulawesi for a Flood Early Warning System

Warianty tytułu
Języki publikacji
In this study, we model extreme rainfall to study the high rainfall events in the province of South Sulawesi, Indonesia. We investigated the effect of the El Nino South Oscillation (ENSO), Indian Ocean Dipole Mode (IOD), and Madden-Julian Oscillation (MJO) on extreme rainfall events. We also assume that events in a location are affected by events in other nearby locations. Using rainfall data from the province of South Sulawesi, the results showed that extreme rainfall events are related to IOD and MJO. (original abstract)
Opis fizyczny
  • Hasanuddin University, Indonesia
  • Hasanuddin University, Indonesia
  • Hasanuddin University, Indonesia
  • Achcar J.A., Rodrigues E.R., Paulino C.D., Soares P.: Non-homogeneous Poisson models with a change-point: an application to ozone peaks in Mexico city. Environmental and Ecological Statistics, vol. 17, 2010, pp. 521-541.
  • Ashok K., Guan Z., Saji N.H., Yamagata T.: Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. Journal of Climate, vol. 17, 2004, pp. 3141-3155.
  • Banerjee S., Carlin B., Gelfand A.: Hierarchical Modeling and Analysis for Spatial Data. Monographs on Statistics and Applied Probability, 101, Chapman and Hall/CRC Press, New York 2004.
  • Coles S.: An Introduction to Statistical Modeling of Extreme Values. Springer, Bristol 2001.
  • Deni O.L., Edy S., Sabaruddin S., Iskhaq I.: Respective Influences of Indian Ocean Dipole and El Niño-Southern Oscillation on Indonesian Precipitation. Journal of Mathematical and Fundamental Sciences, vol. 50, no. 3, 2018, pp. 257-272.
  • Hendon H.H.: Indonesian Rainfall Variability: Impacts of ENSO and Local Air-Sea Interaction. Journal of Climate, vol. 16, issue 11, 2003, pp. 1775-1790.
  • Hidayat R.: Modulation of Indonesian Rainfall Variability by the Madden-Julian Oscillation. Procedia Environmental Sciences, vol. 33, 2016, pp. 167-177.
  • Huang X., Grace P., Hu W., Rowlings D., Mengersen K.: Spatial prediction of N2O emissions in pasture: a Bayesian model averaging analysis. PLoS One, vol. 8(6), 2013, e65039.
  • Jones Ch., Waliser D.E., Lau K.M., Stern W.: Global occurrences of extreme precipitation and the Madden-Julian Oscillation: observations and predictability. Journal of Climate, vol. 17(23), 2004, pp. 4575-45.
  • Keim B.D., Cruise F.J.: A Technique to Measure Trends in the Frequency of Discrete Random Events. Journal of Climate, vol. 11, 1998, pp. 848-855.
  • Lee H.S.: General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity. Water, vol. 7(4), 2015, pp. 1751-1768.
  • Marco M., Gracia E., López-Quílez A.: Linking Neighborhood Characteristics and Drug-Related Police Interventions: A Bayesian Spatial Analysis. ISPR International Journal of Geo-Information, vol. 6(3), 2017, 65.
  • Mondal A., Mujumdar P.P.: Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. Journal of Hydrology, vol. 521, 2015, pp. 217-231.
  • Nur'utami M.N., Hidayat R.: Influences of IOD and ENSO to Indonesian Rain-fall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, vol. 33, 2016, pp. 196-203.
  • Pourasghar F., Oliver E.C.J., Holbrook N.J.: Modulation of wet-season rainfall over Iran by the Madden-Julian Oscillation, Indian Ocean Dipole and El Niño- Southern Oscillation. International Journal of Climatology, vol. 39, 2019, pp. 1-12.
  • Rusworth A., Lee D., Mitchell R.: A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London. Spatial and Spatio-temporal Epidemiology, vol. 10, 2014, pp. 29-38.
  • Sharkey P., Winter H.C.: A Bayesian spatial hierarchical model for extreme precipitation in Great Britain. 2017, arXiv:1710.02091v1.
  • Sirangelo B., Ferrari E., de Luca D.: Occurrence analysis of daily rain-falls through non-homogeneous poissonian processes. Natural Hazards and Earth System Sciences, vol. 11, 2011, pp. 1657-1668.
  • The Intergovernmental Panel on Climate Change (IPCC): Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, UK and New York, USA, 2012.
  • Wong H.L., Hsieh S.H., Tu Y.H.: Application of Non-Homogeneous Poisson Process Modeling to Containership Arrival Rate. [in:] 2009 Fourth International Conference on Innovative Computing, Information and Control: ICICIC 2009; Kaohsiung, Taiwan, 7-9 December 2009, Institute of Electrical and Electronics Engineers, 2009, pp. 849-854.
  • Zhang Q., Li J., Singh V.P.: Application of Archimedean copulas in the analysis of the precipitation extremes: effects of precipitation changes. Theoretical and Applied Climatology, vol. 107, 2011, pp. 255-264.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.