PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 28 | nr 3 | 141--147
Tytuł artykułu

Influence of Hydrate Formation and Concentration of Salts on the Corrosion of Steel 20 Pipelines

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the ways to increase natural gas production is to conserve and/or intensify existing wells with their subsequent development. They are characterized by a high content of highly mineralized water, which leads to an increased risk of hydrate formation and internal corrosion. The issue of the formation of gas hydrates in industrial pipelines, which is a major problem for the exploitation of industrial gas pipelines, requires considerable attention to be made to exclude emergency situations. The main task of the study - to determine the effect of hydrates on the corrosion of the pipeline in order to prevent emergencies. A technique for studying the effect of hydration on the corrosion of pipelines has been developed. The combined analysis of the corrosion behavior of pipe material in aggressive media of chloride type was done. According to the results of corrosion-mechanical tests, regularities of joint action of mechanical stresses, concentration of chlorides and hydrate formation on the speed and localization of corrosion processes are established.(original abstract)
Rocznik
Tom
28
Numer
Strony
141--147
Opis fizyczny
Twórcy
  • Ivano-Frankivsk National Technical University of Oil and Gas
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas
  • Ivano-Frankivsk National Technical University of Oil and Gas
autor
  • Ivano-Frankivsk National Technical University of Oil Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil Gas, Ukraine
Bibliografia
  • A Chapoy, et al. "Effect of common impurities on the phase behavior of carbon-dioxide-rich systems:Minimizing the risk of hydrate formation and two-phase flow." SPE Journal, vol. 16, no. 04, pp. 921-930, Dec. 2011, doi: 10.2118/123778-PA
  • A. Kahyarian, M. Singer, and S. Nesic. "Modeling of uniform CO2 corrosion of mild steel in gas transportation systems:a review." Journal of Natural Gas Science and Engineering, vol. 29, pp. 530-549, Feb. 2016, doi: 10.1016/j.jngse.2015.12.052
  • De Waard, U. Lotz, and D. E. Milliams. "Predictive model for CO2 corrosion engineering in wet natural gas pipelines." Corrosion vol. 47, no. 12, pp. 976-985, Jul. 1991.
  • E. O. Obanijesu, et al. "The influence of corrosion inhibitors on hydrate formation temperature along the subsea natural gas pipelines." Journal of Petroleum Science and Engineering, vol. 120, pp. 2 39-252, Aug. 2014, doi: 10.1016/j.petrol.2014.05.025
  • E. O. Obanijesu, V. Pareek, and M. O. Tade. "Hydrate formation and its influence on natural gas pipeline internal corrosion rate." SPE oil and gas India conference and exhibition. Society of Petroleum Engineers, Mumbai, India, Jan. 20-22, 2010, doi: 10.2118/128544-MS
  • E. O. Obanijesu, V. Pareek, and M. O. Tade. "Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines." Petroleum science and technology, vol. 32, no. 21, pp. 2538-2548, Sep. 2014, doi: 10.1080/10916466.2013.842586
  • J.-L. Peytavy, P. Glenat, and P. Bourg. "Kinetic hydrate inhibitors-sensitivity towards pressure and corrosion inhibitors." International Petroleum Technology Conference, Dubai, U.A.E. Dec. 4-6, 2007, doi: 10.2523/IPTC-11233-MS
  • K. Alef, et al. "Evaluation of MEG reclamation and natural gas hydrate inhibition during corrosion control switchover." Journal of Petroleum Science and Engineering, vol. 176, pp. 1175-1186, May. 2019, doi: 10.1016/j.petrol.2018.08.052
  • L. E. Zerpa, et al. "Predicting hydrate blockages in oil, gas and water-dominated systems." Offshore Technology Conference, Houston, Texas, USA, 30 Apr.-3 May 2012, doi: 10.4043/23490-MS
  • L. Poberezhny, et al. "Corrosion-mechanical behavior of gas main steel in saline soils." Koroze a ochrana materialu vol. 63, no. 3, pp. 105-112, Dec. 2019, doi: 10.2478/kom-2019-0014
  • L. Poberezhny, et al. "Impact of gas hydrates and long-term operation on fatigue characteristics of pipeline steels." Procedia Engineering. TRANSBALTICA 2017. Transportation science and technology:proceedings of the 10th international scientific conference, Vilnius Gediminas Technical University, Vilnius, Lithuania, May 4-5, 2017, doi: 10.1016/j.proeng.2017.04.386
  • L. Poberezhny, et al. "Influence of hydrate formation and wall shear stress on the corrosion rate of industrial pipeline materials." Koroze a ochrana materialu vol. 62, no. 4, pp. 121-128, Dec. 2018, doi: 10.2478/kom-2018-0017
  • L. Poberezhnyi, et al. "Corrosive and mechanical degradation of pipelines in acid soils." Strength of Materials vol. 49, no. 4, pp. 539-549, Nov. 2017, doi: 10.1007/s11223-017-9897-x
  • M. Akhfash, et al. "Gas hydrate thermodynamic inhibition with MDEA for reduced MEG circulation." Journal of Chemical & Engineering Data, vol. 62, no. 9, pp. 2578-2583, Apr. 2017, doi: 10.1021/acs.jced.7b00072
  • M. E. Semenov, I. K. Ivanova, and V. V. Koryakina. "Intensification of metal corrosion in gas hydrate formation." AIP Conference Proceedings, AIP Publishing LLC, vol. 2053. no. 1. Dec. 2018, doi: 10.1063/1.5084527
  • N. Kalogerakis, et al. " Effect of surfactants on hydrate formation kinetics." SPE international symposium on oilfield chemistry. Society of Petroleum Engineers, New Orleans, Louisiana, Mar. 2-5, 1993, doi: 10.2118/25188-MS
  • P. Hu, et al. "Effects of carbon steel corrosion on the methane hydrate formation and dissociation." Fuel, vol. 230, pp. 126-133, Oct. 2018, doi: 10.1016/j.fuel.2018.05.024
  • P. Maruschak, et al. "Physical and mechanical aspects of corrosion damage of distribution gas pipelines after long-term operation." Journal of failure analysis and prevention, vol. 18, no. 3, pp. 562-567, Mar. 2018, doi: 10.1007/s11668-018-0439-z
  • P. Maruschak, et al. "Structural and mechanical defects of materials of offshore and onshore main gas pipelines after long-term operation." Open Engineering, vol. 5, no. 1, pp. 365-372, Oct. 2015, doi: 10.1515/eng-2015-0045
  • Qi. Sheng, et al. "Simultaneous hydrate and corrosion inhibition with modified poly (vinyl caprolactam) polymers." Energy & Fuels, vol. 31, no. 7, pp. 6724-6731, Jun 2017, doi:10.1021/acs.energyfuels.7b00525
  • A. Eslamimanesh, A.H. Mohammadi, and D. Richon. "Thermodynamic consistency test for experimental solubility data in carbon dioxide/methane + water system inside and outside gas hydrate formation region." Journal of Chemical & Engineering Data, vol. 56, no. 4, pp. 1573-1586, Mar. 2011, doi:10.1021/je1012185
  • S. Nešić."Key issues related to modelling of internal corrosion of oil and gas pipelines - A review." Corrosion science, vol. 49, no. 12, pp. 4308-4338, Dec. 2007, doi:10.1016/j.corsci.2007.06.006
  • S. Mokhatab, R. J. Wilkens, and K. J. Leontaritis. "A review of strategies for solving gas-hydrate problems in subsea pipelines." Energy Sources, Part A, vol. 29, no. 1, pp. 39-45, Dec. 2006, doi:10.1080/009083190933988
  • Standard, Norsork. "CO2 Corrosion rate calculation model." Majorstural, Norway: Norwegian Technological Standards Institute Oscarsgt 20, Jun. 2005.
  • W. Li, et al. "A study of hydrate plug formation in a subsea natural gas pipeline using a novel high-pressure flow loop." Petroleum science, vol. 10, no. 1, pp. 97-105, Mar. 2013, doi:10.1007/s12182-013-0255-8
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171620758

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.