Czasopismo
Tytuł artykułu
Warianty tytułu
Wykorzystanie techniki sliding window w danych z szeregów czasowych. Przykład giełd papierów wartościowych
Języki publikacji
Abstrakty
Data have shapes, and human intelligence and perception have to classify the forms of data to understand and interpret them. This article uses a sliding window technique and the main aim is to answer two questions. Is there an opportunity window in time series of stock exchange index? The second question is how to find a way to use the opportunity window if there is one. The authors defined the term opportunity window as a window that is generated in the sliding window technique and can be used for forecasting. In analysis, the study determined the different frequencies and explained how to evaluate opportunity windows embedded using time series data for the S&P 500, the DJIA, and the Russell 2000 indices. As a result, for the S&P 500 the last days of the patterns 0111, 1100, 0011; for the DJIA the last days of the patterns 0101, 1001, 0011; and finally for the Russell 2000, the last days of the patterns 0100, 1001, 1100 are opportunity windows for prediction.(original abstract)
Dane mają swoje formy, a ludzka inteligencja i pojmowanie muszą klasyfikować te formy w celu ich zrozumienia i interpretacji. W niniejszym artykule stosuje się technikę rozsuwanego okna (sliding window) i podejmuje próbę odpowiedzi na dwa pytania: czy możliwe jest pojawienie się szansy (opportunity window) w szeregach czasowych ideksów giełdowych; jak znaleźć sposób na wykorzystanie pojawiającej się okazji, jeśli taka istnieje. Autorzy zdefiniowali pojęcie opportunity window jako okazja (otwarcie) wygenerowana w technice sliding window, która może być zastosowana w prognozowaniu. Szukając odpowiedzi, autorzy określili częstotliwości na 3, 4 i 5 długościach wzorców skierowanych w górę i w dół oraz wyjaśnili, jak oszacować okazje osadzone przy użyciu danych szeregów czasowych dla giełd S&P 500, DJIA i Russell 2000. W rezultacie dla S&P 500 ostatnie dni wzorców 0111,1100,0011, dla DJIA ostatnie dni dla 0101, 1001, 0011 oraz dla Russell 2000 ostatnie dni dla 0100, 1001 i 1100 stanowią okazję dla prognozy.(abstrakt oryginalny)
Rocznik
Tom
Numer
Strony
1--19
Opis fizyczny
Twórcy
autor
- Fenerbahçe University, Turkey
autor
- Dokuz Eylül University, Turkey
autor
- Istanbul Aydın University, Turkey
Bibliografia
- Ali, M., Jones, W. M., Xie, X., and Williams, M. (2019), Time cluster: Dimension reduction applied to temporal data for visual analytics. The Visual Computer, 35(6-8), 1013-1026.
- Cai, J., and Houge, T. (2008). Long-Term Impact of Russell 2000 Index Rebalancing. Financial Analysts Journal, 64(4), 76-91. https://doi.org/10.2469/faj.v64.n4.7
- Gareth, J., Witten, D., Hastie, T., and Tibshirani, R. (2017). An introduction to statistical learning with applications in R. Springer, Springer Texts in Statistics.
- Hora, S., and Jalbert, T. (2006). The Dow Jones Industrial Average in the twentieth century - Implications for option pricing. Academy of Accounting and Financial Studies Journal, 10(3), 17-40.
- Hota, H. S., Handa, R., and Shrivas, A. K. (2017). Time series data prediction using sliding window based RBF neural network. International Journal of Computational Intelligence Research, 13(5), 1145-1156.
- Lerman, D. (2001). Exchange traded funds and e-mini stock index futures. Wiley and Sons.
- Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. doi: 10.1371/journal. pone.0194889
- Mozaffari, L., Mozaffari, A., and Azad, N. (2015). Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads. Engineering Science and Technology. An International Journal, 18(2), 150-162. doi: 10.1016/j.jestch.2014.11.002
- Öztürk Katircioğlu, D., Güvenir, H. A., Ravens, U., and Baykal, N. (2017). A window-based time series feature extraction method. Computers in Biology and Medicine, (89), 466-486.
- Rajalakshmi, D., and Dinakaran, K. (2015). A survey on effective pattern matching in uncertain time series stream data. Asian Journal of Applied Sciences, (8), 217-226. doi: 10.3923/ajaps.2015.217.226
- Senthil, D., and Suseendran, G. (2018). Efficient time series data classification using sliding window technique based improved association rule mining with enhanced support vector machine. International Journal of Engineering & Technology, 7(3.3), 218. doi: 10.14419/ijet.v7i2.33.13890
- Siegel, J. J., and Schwartz J. D. (2006). Long-term returns on the original S&P 500 companies. Financial Analysts Journal, 62(1) 18-31.
- Spglobal. (2020). Dow Jones Industrial Average®. Retrieved from https://www.spglobal.com /spdji/en/ indices/equity /dow-jones-industrial-average/
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171623838