PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 1 | 9--25
Tytuł artykułu

Oxygen Measurements in Quality and Safety Assessment of Products and Services

Autorzy
Warianty tytułu
Pomiary tlenu w zapewnieniu jakości i bezpieczeństwa produktów i usług
Języki publikacji
EN
Abstrakty
EN
The work presents various practical applications of oxygen measurements used to ensure the quality and safety of processes, products and services. Both more and less known applications of oxygen measurements are presented, but all of them of great practical and economic importance. The use of oxygen measurements was presented, among others in the quality control of packaging and food products, water quality control, environmental protection, automotive, aviation, maritime transport, energy production, mining industry, petrochemicals, medicine and other important fields. Attention was paid to the economic and social aspects of oxygen measurements. (original abstract)
W pracy zaprezentowano różne praktyczne aplikacje pomiarów tlenu wykorzystywane do zapewnienia jakości oraz bezpieczeństwa procesów, produktów i usług. Przybliżono zarówno bardziej, jak i mniej znane zastosowania pomiarów tlenu, wszystkie jednak o ogromnym znaczeniu praktycznym i gospodarczym. Przedstawiono wykorzystanie pomiarów tlenu m.in. w kontroli jakości opakowań i produktów spożywczych, kontroli jakości wody, ochronie środowiska naturalnego, motoryzacji, lotnictwie, transporcie morskim, wytwarzaniu energii, przemyśle wydobywczym, petrochemii, medycynie i wielu innych ważnych dziedzinach. Zwrócono uwagę na ekonomiczne i społeczne aspekty pomiarów tlenu. (abstrakt oryginalny)
Rocznik
Numer
Strony
9--25
Opis fizyczny
Twórcy
  • Poznań University of Economics and Business
Bibliografia
  • [1] Canfield D.E. (2014) Oxygen: a four billion year history. Princeton University Press, New Jersey.
  • [2] Lane N. (2010) Life's a gas. Oxygen made us, but what made oxygen. New Scientist, 2746, 38-39.
  • [3] Muñoz N., Bhunia K., Zhang H., Barbosa-Cánovas G.V., Tang J., Sablani S. (2017) Headspace oxygen as a hurdle to improve the safety of in-pack pasteurized chilled food during storage at different temperatures. International Journal of Food Microbiology, 253, 29-35.
  • [4] Samotyja U., Kozak W. (2015) Headspace oxygen measurements can be used as a fast and convenient method for shelf-life assessment of potato snacks. European Journal of Lipid Science and Technology, 117 (6), 851-857.
  • [5] Barnette B.M., Shellhammer T.H. (2019) Evaluating the impact of dissolved oxygen and aging on dry-hopped aroma stability in beer. Journal of the American Society of Brewing Chemists, 77 (3), 179-187.
  • [6] An D.S, Lee J.H., Lee D.S. (2018) Shelf life model of powdered infant formula as function of temperature and oxygen concentration. Food Packaging and Shelf Life, 15, 130-133.
  • [7] Wen J.W., Huang S.T., Jia L., Ding F.Y., Li H.B., Chen L.Y., Liu X.H. (2019) Visible colorimetric oxygen indicator based on Ag-loaded TiO2 nanotubes for quick response and real-time monitoring of the integrity of modified atmosphere packaging. Advanced Materials Technologies, 4 (9), 1900121.
  • [8] Oliveira V., Lopes P., CabralM., Pereira H. 2015. "Influence of cork defects in the oxygen ingress through wine stoppers: Insights with X-ray tomography". Journal of Food Engineering 165 : 66-73.
  • [9] Baele M., Vermeulen A., Leloup F., Adons D., Peeters R., Devlieghere F., De Meulenaer B., Ragaert P. (2020) Effect of packaging oxygen transmission rate on the shelf life of ready-to-heat foods susceptible to postcontamination during refrigerated and illuminated storage. Packaging Technology and Science,33 (3), 99-111.
  • [10] Dieval J.B., Vidal S., Aagaard O. (2011) Measurement of the oxygen transmission rate of co-extruded wine bottle closures using a luminescence-based technique. Packaging Technology and Science, 24 (7), 375-385.
  • [11] Lu X., Cornforth D.P., Carpenter C.E., Zhu L.X., Luo X. (2020) Effect of oxygen concentration in modified atmosphere packaging on color changes of the M. longissimus thoraces et lumborum from dark cutting beef carcasses. Meat Science, 161, 107999.
  • [12] Poirier B.C., Mattheis J.P., Rudell D.R. (2020) Extending 'Granny Smith' apple superficial scald control following long-term ultra-low oxygen controlled atmosphere storage. Postharvest Biology and Technology, 161, 111062.
  • [13] Huang ST., Li H.J., Wang Y.X., Liu X.H., Li H.B., Zhan Z., Jia L., Chen L.Y. (2018) Monitoring of oxygen using colorimetric indicator based on graphene/TiO2 composite with first-order kinetics of methylene blue for modified atmosphere packaging. Packaging Technology and Science, 31 (9), 575-584.
  • [14] Al Helal A., Iglauer S., Gubner R., Barifcani A. (2019) Performance of erythorbic acid as an oxygen scavenger in salted fresh and degraded monoethylene glycol under a magnetic memory effect. Asia-Pacific Journal of Chemical Engineering, 14 (5), UNSP e2364.
  • [15] WHO - World Health Organization, 2017, Guidelines for drinking-water quality, 4th edition, https://www.who.int/water_sanitation_health/publications/drinking-water- quality- guidelines-4-including-1st-addendum/en/ [access: 15.11.2019].
  • [16] Jones B. (2011) Oxygen - the most important water quality parameter?. Water Column, 23 (1), 1-4.
  • [17] Emerson, S.R., Bushinsky S. (2014) Oxygen concentrations and biological fluxes in the open ocean. Oceanography, 27 (1), 168-171.
  • [18] Helm K.P., Bindoff N.L., Church J.A. (2011) Observed decreases in oxygen content of the global ocean. Geophysical Research Letters, 38, L23602.
  • [19] Hobbs J.P.A., McDonald C.A. (2010) Increased seawater temperature and decreased dissolved oxygen triggers fish kill at the Cocos (Keeling) Islands, Indian Ocean. Journal of Fish Biology, 77 (6), 1219-1229.
  • [20] Mitchell T.O. (2006) Luminescence based measurement of dissolved oxygen in natural waters. Hach Company, pp. 1-8, http://www.ott.com/download/ldo-white-paper/ [access: 05.12.2019].
  • [21] Docquier N., Candel S. (2002) Combustion control and sensors: a review. Progress in Energy and Combustion Science, 28 (2), 107-150.
  • [22] Fleming W.J. (2001) Overview of automotive sensors. IEEE Sensors Journal, 1 (4), 296-308.
  • [23] de Souza Sobrinhoa A.S., Cavalcante Juniora F.S., de Limaa L.C. (2012) Monitoring industrial combustion through automotive oxygen Sensor. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 3 (2), 203-211.
  • [24] Szabo N., Lee C., Trimboli J., Figueroa O., Ramamoorthy R., Midlam-Mohler S., Soliman A., Verweij H., Dutta P., Akbar S. (2003) Ceramic-based chemical sensors, probes and field-tests in automobile engines. Journal of Materials Science, 38 (21), 4239-4245.
  • [25] Moos R., Izu N., Rettig F., Reiß S., Shin W., Matsubara I. (2011) Resistive oxygen gas sensors for harsh environments. Sensors, 11 (4), 3439-3465.
  • [26] Galyen N., Plemmons D. (2010) Optical mass flux sensor. Proceedings of 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference AIAA 2010- 4910, pp. 1-8.
  • [27] FAA - Federal Aviation Administration. 2018. "Aviation Maintenance Technician Handbook-airframe. Volume 2, Chapter 16: Cabin Environmental Control Systems", https://www.faa.gov/regulations_policies/handbooks_manuals/ aircraft/media/amt_airframe_hb_vol_2.pdf [access: 12.12.2019].
  • [28] Honeywell. 2008. "On-Baord Oxygen Generation Systems (OBOGS)" https://www. scribd.com/document/374750299/Life-Support-Systems-pdf [access: 21.12.2019].
  • [29] Merzvinskas M., Bringhenti C., Tomita J.T., de Andrade C.R. (2020) Air conditioning systems for aeronautical applications: a review. The Aeronautical Journal, 124 (1274), 499-532.
  • [30] NASA. 2001. "Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study" NASA/CR-2001-210950 https://ntrs.nasa. gov/archive/nasa/casi.ntrs.nasa.gov/20010092198.pdf [access: 02.12.2019].
  • [31] Panahi A. (2009) Fiber optic oxygen sensor using fluorescence quenching for aircraft inerting fuel tank applications. Proceedings of SPIE - The International Society For Optical Engineering, 7314, D1-D12.
  • [32] FAA - Federal Aviation Administration. 2004. "Limiting Oxygen Concentration Required to Inert Jet Fuel Vapors Existing at Reduced Fuel Tank Pressures - Final Phase" https://www.fire.tc.faa.gov/pdf/04-8.pdf [access: 01.12.2019].
  • [33] International Chamber of Shipping, Oil Companies International Marine Forum, International Association Of Ports And Harbors. 1996. "International Safety Guide for Oil Tankers & Terminals" http://www.idgca.org/doc/app2_290115.pdf [access: 26.11.2019].
  • [34] Transport Canada. 2009. "Tanker safety, crude oil washing and inert gas, and supervisor of transfer operations training courses". TP 8129E (01/2009) https://www. tc.gc.ca/media/documents/marinesafety/tp8129e.pdf [access: 24.11.2019].
  • [35] Mazurek W. (2005) Submarine atmospheres. In: Hocking M.B., Hocking D. (eds): Air quality in airplane cabins and similar enclosed spaces. Springer-Verlag, Berlin Heidelberg, pp. 351-382.
  • [36] Mazurek W. (1998) Current submarine atmosphere control technology. Life Support & Biosphere Science, 5 (3), 279-285.
  • [37] NOAA - National Oceanic and Atmospheric Administration. 2017. "NOAA Diving Standards & Safety Manual" https://www.omao.noaa.gov/sites/default/files/documents/ NDSSM%20Final_041217.pdf [access: 7.12.2019].
  • [38] Graver K.D. (2010) Scuba diving. Human Kinetics, Champaign.
  • [39] Bantin J. (2007) Scuba diving handbook: The complete guide to safe and exciting scuba diving. Firefly Books, Richmond Hill.
  • [40] Baukal C.E. Jr. (2011) Industrial combustion testing. CRC Press, Boca Raton.
  • [41] Mittal M. (2013) Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety. Journal of Loss Prevention in the Process Industries, 26 (6), 1106-1112.
  • [42] Bell S., Dunand F., Schubert M., König R. (2012) Optical dissolved oxygen measurement in power plants. Hach Company http://uk.hach.com/cms-portals/hach_ uk/ cms/documents/power-dissolved-oxygen.pdf [Access: 28.11.2019].
  • [43] Rozporządzenie Ministra Gospodarki z dnia 28 czerwca 2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycznego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych, (Dz. U. Nr 139, poz. 1169, z 2006 r. Nr 124, poz. 863 oraz z 2010 r. Nr 126, poz. 855).
  • [44] Beavers J.A., Thompson N.G. (2006) External corrosion of oil and natural gas pipelines. ASM Handbook 13C : 05145G.
  • [45] Birdi K.S., Kleinitz W. (1998) Problems associated with dissolved atmospheric oxygen in crude oil at production facilities. Oil Gas-European Magazine, 24 (2), 25-28.
  • [46] Popoola L.T., Grema A.S., Latinwo G.K., Gutti B., Balogun A.S. (2013) Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry, 4 (35), 1-15.
  • [47] Brondel D., Edwards R., Hayman A., Hill D., Mehta S., Semerad T. (1994) Corrosion in the oil industry. Oilfield Review, 6 (2), 4-18.
  • [48] Sridhar N., Dunn D.S., Anderko A.M., Lencka M.M., Schutt H.U. (2001) Effects of water and gas compositions on the internal corrosion of gas pipelines-modeling and experimental studies. Corrosion, 57 (3), 221-235.
  • [49] Carlson B., Dumoit J., Zheng S., Yanisko P. (2011) Nitrogen: A security blanket for the chemical industry. Chemical Engineering Progress, 11, 50-55.
  • [50] Willett M. (2014) Oxygen sensing for industrial safety - evolution and new approaches. Sensors, 14 (4), 6084-6103.
  • [51] Zlochower I.A., Green G.M. (2009) The limiting oxygen concentration and flammability limits of gases and gas mixtures. Journal of Loss Prevention in the Process Industries, 22 (4), 499-505.
  • [52] Persson H. (2013) Silo Fires - Fire extinguishing and preventive and preparatory measures. Swedish Civil Contingencies Agency (MSB), 5-120, https://www.msb.se/ RibData/Filer/pdf/27144.pdf [Access: 17.12.2019].
  • [53] Schmidt M., Lohrer C., Krause U. (2003) Self-ignition of dust at reduced volume fractions of ambient oxygen. Journal of Loss Prevention in the Process Industries, 16 (2), 141-147.
  • [54] Emerson Process Management. 2014. "Oxygen Measurement Improves Efficiency and Product Quality in Cement and Lime Kilns" https://www.emerson.com/ documents/ automation/application-data-sheet-oxygen-measurement-improves-efficiencyproduct- quality-in-cement-kilns-rosemount-en-69394.pdf [Access: 30.11.2019].
  • [55] Laimböuck P.R., Beerkens R.G.C. (2006) On-line oxygen sensor for the tin bath in float glass production lines. A collection of papers presented at the 66th Conference on Glass Problems. Ceramic Engineering and Science Proceedings, 27 (1), 19-46.
  • [56] Ugliano M. (2013) Oxygen contribution to wine aroma evolution during bottle aging. Journal of Agricultural and Food Chemistry, 61 (26), 6125-6136.
  • [57] Dunand F.A. (2009) Oxygen measurement technologies in the Brewing industry. Environmental Technoogies, 5/6, 22-23.
  • [58] O'Brien V., Colby C., Nygaard M. (2009) Managing oxygen ingress at bottling. Wine Industry Journal, 24 (1), 24-29.
  • [59] Klein, C., Dunand F.A. (2008) Improved shelf life and quality - O2-measurements for the brewing industry. Brewing and Beverage Industry International, 1, 22-26.
  • [60] O'Rourke T. (2002) The role of oxygen in brewing. The Brewer International, 3, 45-47.
  • [61] Westwood, M.M., Rieley W. (2015) Medical gases, their storage and delivery. Anaesthesia and Intensive Care Medicine, 16 (11), 551-556.
  • [62] Gentile M.A. (2011) Inhaled medical gases: more to breathe than oxygen. Respiratory Care, 56 (9), 1341-1357.
  • [63] Baum J.A. (2004) The carrier gas in anaesthesia: nitrous oxide/oxygen, medical air/oxygen and pure oxygen. Current Opinion in Anaesthesiology, 17 (6), 513-516.
  • [64] Diepart C., Verrax J., Calderon P.B., Feron O., Jordan B.F., Gallez B. (2010) Comparison of methods for measuring oxygen consumption in tumor cells in vitro. Analytical Biochemistry, 396 (2), 250-256.
  • [65] Grist S.M., Chrostowski L., Cheung K.C. (2010) Optical oxygen sensors for applications in microfluidic cell culture. Sensors, 10 (10), 9286-9316.
  • [66] Talwalkar A., Kailasapathy K. (2004) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Current Issues in Intestinal Microbiology, 5 (1), 1-8.
  • [67] del Hierro A.M., Kronberger W., Hietz P., Offenthaler I., Richter H. (2002) A new method to determine the oxygen concentration inside the sapwood of trees. Journal of Experimental Botany, 53 (368), 559-563.
  • [68] Shi R., Zhang F.S., Zhang Z.Y. (2018) Recycling oxygen from spaceflight solid waste for life support system: Potential of pyrolysis process. Chemical Engineering Journal, 334, 479-486.
  • [69] Sharmaa G., Raib R.N. (2019) Reliability modeling and analysis of environmental control and life support systems of space stations: A literature survey. Acta Astronautica, 155, 238-246.
  • [70] Gruenwald J. (2016) A hybrid plasma technology life support system for the generation of oxygen on Mars: Considerations on materials and geometry. Acta Astronautica, 123, 188-191.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171628694

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.