PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 1 | 26--40
Tytuł artykułu

Economic and Environmental Aspects of the Use of Low-Cost Adsorbents for Wastewater Treatment from Pollution

Autorzy
Warianty tytułu
Ekonomiczne i środowiskowe aspekty stosowania tanich adsorbentów do oczyszczania ścieków z zanieczyszczeń
Języki publikacji
EN
Abstrakty
EN
In recent years, household, agricultural and industrial activities have affected the balance of the natural environment, causing drastic climate change and producing wastewater containing high levels of various types of harmful pollution. Due to the limited amount of good quality water, it is necessary to properly clean the wastewater of all impurities. Unfortunately, most of the conventional methods are expensive, so work is underway to find cheap purification methods. This article reviews the literature on the content of various types of toxic components in wastewater, methods for their removal, as well as the possibility of using inexpensive natural materials, agricultural and industrial waste, as well as by-products of processing, collectively called low-cost adsorbents. Economic and environmental aspects of their use for adsorptive removal of pollutants from wastewater, including heavy metals, were discussed. The possibilities of recycling these materials were determined, they were compared with commercial adsorbents, but also a cost analysis was carried out. The results of these literature studies can be useful especially in determining the direction of development of global industry and economy due to resulting social, environmental and economic benefits. (original abstract)
W ostatnich latach działalność gospodarstw domowych, rolnictwa i przemysłu wpłynęła na równowagę środowiska naturalnego, powodując drastyczne zmiany klimatu i wytwarzając ścieki o wysokim poziomie różnego rodzaju szkodliwych zanieczyszczeń. Ze względu na ograniczoną ilość dobrej jakości wody konieczne jest odpowiednie oczyszczanie ścieków z wszelkich zanieczyszczeń. Niestety większość konwencjonalnych metod jest kosztowna, dlatego trwają prace nad znalezieniem tanich metod oczyszczania. W niniejszym artykule dokonano przeglądu literatury na temat zawartości różnych rodzajów toksycznych składników w ściekach, metod ich usuwania, a także możliwości zastosowania niedrogich materiałów naturalnych, odpadów rolniczych i przemysłowych, a także produktów ubocznych procesów przetwarzania, zwanych zbiorczo tanimi adsorbentami. Omówiono ekonomiczne i środowiskowe aspekty ich zastosowania do adsorpcyjnego usuwania zanieczyszczeń ze ścieków, w tym metali ciężkich. Określono możliwości recyklingu tych materiałów, porównano je z komercyjnymi adsorbentami, ale także przeprowadzono analizę kosztów. Wyniki tych badań literaturowych mogą być przydatne zwłaszcza w określaniu kierunku rozwoju światowego przemysłu i gospodarki ze względu na wynikające z tego korzyści społeczne, środowiskowe i ekonomiczne. (abstrakt oryginalny)
Rocznik
Numer
Strony
26--40
Opis fizyczny
Twórcy
autor
  • Poznań University of Economics and Business
Bibliografia
  • [1] Renou S., Givaudan J.G., Poulain S., Dirassouyan F., Moulin P. (2008) Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468-493.
  • [2] Gupta V.K., Carrott P.J.M., Ribeiro Carrott M.M.L., Suhas T.L. (2009) Low-cost adsorbents: growing approach to wastewater treatment. A review. Critical Reviews in Environmental Sciece and Technology, 39, 783-842.
  • [3] Sulyman M., Namiesnik J., Gierak A. (2017) Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater. A review. Polish Journal of Environmental Studies, 26 (2), 479-510.
  • [4] Gupta V.K., Ali I. (2013) Environmental water advances in treatment, remediation and recycling. Elsevier, pp. 1-232.
  • [5] Werkneh A.A., Rene E.R. (2019) Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In: Bui X.T., Chiemchaisri C., Fujioka T., Varjani S. (eds) Water and wastewater treatment technologies. energy, environment, and sustainability. Springer, Singapore, pp. 405-430.
  • [6] De Zuane J. (1997) Handbook of drinking water quality. Van Nostrand Reinhold, New York.
  • [7] Kant R. (2012) Textile dyeing industry an environmental hazard. Natural Science, 4 (1), 22-26.
  • [8] Villegas L.G.C., Mashhadi N., Chen M. Mukherjee D., Taylor K.E., Biswas N. (2016) A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157-167.
  • [9] Kalak T., Cierpiszewski R. (2019) Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology. Polish Journal of Chemical Technology, 21 (4), 72-81.
  • [10] Fourest E., Roux J. (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37, 399- 403.
  • [11] Mohan D., Pittman Jr C.U. (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762-811.
  • [12] Aydın H., Bulut Y., Yerlikaya C. (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87, 37-45.
  • [13] El-Sheikh A.H., Newman A.P., Al-Daffaee H.K., Phull S., Cresswell N. (2004) Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques. Journal of Analytical and Applied Pyrolysis, 71, 151-164.
  • [14] Paraskeva P., Kalderis D., Diamadopoulos E. (2008) Production of activated carbon from agricultural by-products. Journal of Chemical Technology & Biotechnology, 83 (5), 581-592.
  • [15] Lim L.B..L, Wahid W.A., Zaidi N.A.H.M. (2018) leaves of Averrhoa bilimbi as a superior low-cost adsorbent for lead(II) Removal. Journal of Materials Science Research, 01, 1-10.
  • [16] Nandal M., Hooda R., Dhania G. (2014) Tea wastes as a sorbent for removal of heavy metals from wastewater. International Journal of Current Engineering Technology, 4 (1), 243-247.
  • [17] Sulyman M. (2016) Agricultural by-products/waste as dye and metal ions adsorbents: a review, research inventy: International Journal of Engineering and Science, 6 (6), 1-20.
  • [18] Bello O.S., Adegoke K.A., Olaniyan A.A., Abdulazeez H. (2015) Dye adsorption using biomass wastes and natural adsorbents: overview and future prospects. Desalination and Water Treatment, 53, 292-1315.
  • [19] Chen J.P., Wang L.K., Wang M-H.S., Hung Y-T., Shammas N.K. (2016). Remediation of heavy metals in the environment, CRC Press.
  • [20] Ali I., Asim M., Khan T.A. (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170-183.
  • [21] Robinson T., Chandran B., Nigam P. (2002) Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 36, 2824-2830.
  • [22] Mallampati R., Valiyaveettil S. (2013) Apple peels--a versatile biomass for water purification? ACS Applied Materials & Interfaces, 5 (10), 4443-4449.
  • [23] Arunakumara K.K.I.U., Walpola B.Ch., Yoon M-H. (2013) Banana peel: A green solution for metal removal from contaminated waters. Korean Journal of Environmental Agriculture, 32 (2), 108-116.
  • [24] Guo, X.Y., Liang, S., Tian, Q.H. 2011. Removal of heavy metal ions from aqueous solutions by adsorption using modified orange peel as adsorbent. Advanced Materials Research, 236-238, 237-240.
  • [25] Bello O.S., Ahmad M.A. (2012) Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. Separation Science and Technology, 47 (6), 903-912.
  • [26] Tsunoda R., Ozawa T., Ando J.I. (1998) Ozone treatments of coal and coffee groundsbased active carbons: Water vapour adsorption and surface fractal micropores. Journal of Colloid and Interface Science, 205, 265-270.
  • [27] Orhan Y., Büyükgüngör H. (1993) The removal of heavy metals by using agricultural wastes. Water Science and Technology, 28 (2), 247-255.
  • [28] Hirata M., Kawasaki N., Nakamura T., Matsumoto K., Kabayama M., Tamura T., Tanada I. (2002) Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatments. Journal of Colloid and Interface Science, 254, 1513-1521.
  • [29] Oliveira F.D., Paula J.H., Freitas O.M., Figueiredo S.A. (2009) Copper and lead removal by peanut hulls. Equilibrium and Kinetic Studies, 248 (1-3), 931-940.
  • [30] Hussain S., Anjali K.P., Hassan S.T., Dwivedi P.B. (2018) Waste tea as a novel adsorbent. A review. Applied Water Science, 8, 165.
  • [31] Annadurai G., Juang R., Lee D. (2002) Use of cellulosebased wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials B, 92, 263-274.
  • [32] El-Sayed G.O., El-Sheikh R., Farag N.H. (2015) Maize stalks as a cheap biosorbent for removal of Fe (II) from aqueous solution. International Research Journal of Pure and Applied Chemistry, 6 (2), 66-76.
  • [33] Robinson T., Chandran B., Nigam P. (2002) Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology, 85, 119-124.
  • [34] Lakshmi U.R., Srivastava V.C., Mall I.D., Lataye D.H. (2009) Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for indigo carmine dye. Journal of Environmental Management, 90, 710-720.
  • [35] Mori M. Sekine Y., Hara N., Nakarai K-i., Suzuki Y., Kuge H., Kobayashi Y., Arai A., Itabashi H. (2013) Adsorptivity of heavy metals Cu(II), Cd(II), and Pb(II) on woodchipmixed porous mortar. Chemical Engineering Journal, 215-216, 202-208.
  • [36] Thoe J.M.L., Surugau N., Chong H. (2019) Application of oil palm empty fruit bunch as adsorbent. A review. Transactions on Science and Technology, 6 (1), 9-26.
  • [37] Garg V.K., Gupta R., Yadav A.B., Kumar R. (2003) Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121-124.
  • [38] Sen A., Pereira H. Olivella M.A., Villaescusa I. (2015) Heavy metals removal in aqueous environments using barkas a biosorbent. International Journal of Environmental Science and Technology, 12, 391-404.
  • [39] Swarnalatha K., Ayoob S. (2016) Adsorption studies on coir pith for heavy metal removal. International Journal of Sustainable Engineering, 9 (4), 259-265.
  • [40] Aly H., Daifullah A.A.M. (1998) Potential use of bagasse pith for the treatment of wastewater containing metals. Adsorption Science and Technology, 16 (1), 33-38.
  • [41] Keskinkan O., Goksu M.Z.L., Basibuyuk M., Forster C.F. (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92 (2), 197-200.
  • [42] Kalak T., Dudczak J., Cierpiszewski R. (2016) Bioremediation of waters contaminated with heavy metals using paprika, gooseberry and elderberry waste. In: Żuchowski J., Zieliński R., Lotko M. (red.): Środowiskowe aspekty jakości / Interdyscyplinarność i innowacyjność towaroznawstwa. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji - PIB w Radomiu, Radom, pp. 56-65.
  • [43] Gaballah I., Goy D., Allain E., Kilbertus G., Thauront J. (1997) Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions B, 28, 13-23.
  • [44] Srivastava S.K., Gupta V.K., Mohan D. (1997) Removal of lead and chromium by activated slag - a blast-furnace waste. Journal of Environmental Engineering - ASCE, 123, 461.
  • [45] Suhas T.L., Carrott P.J.M., Ribeiro Carrott M.M.L. (2007) Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology, 98, 2301-2312.
  • [46] Altundogan H.S., Altundogan S., Tumen F., Bildik M. (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management, 20, 761-767.
  • [47] Gupta V.K., Suhas T.L. (2009) Application of low-cost adsorbents for dye removal. A review. Journal of Environmental Management, 90, 2313-2342.
  • [48] Çifçi D.I., Meriç S. (2016) A review on pumice for water and wastewater treatment. Desalination and Water Treatment, 57 (39), 18131-18143.
  • [49] Grassi M., Kaykioglu G., Belgiorno V., Lofrano G. (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Lofrano G. (Ed.), Emerging compounds removal from wastewater. Springer, Netherlands, pp. 15-37.
  • [50] Toles C.A., Marshall W.E., Wartelle L.H., McAloon A. (2000) Steam- or carbon dioxide-activated carbons from almond shells: Physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 75, 197-203.
  • [51] USGS. 2020a. National Minerals Information Center: Clays statistics and information. Available at: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-clays.pdf (accessed: January 29, 2020).
  • [52] Srivastava S.K., Gupta V.K., Yadav I.S., Mohan D. (1995) Removal of 2,4-dinitrophenol using bagasse fly ash - a sugar industry waste material. Fresenius Environmental Bulletin, 4 (9), 550-557.
  • [53] Jain A.K., Gupta V.K., Bhatnagar A., Suhas T.L. (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101, 31-42.
  • [54] Babel S., Kurniawan T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97 (1-3), 219-243.
  • [55] Babel S., Kurniawan T.A. (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54 (7), 951-967.
  • [56] Atun G., Hisarli G., Sheldrick W.S., Muhler M. (2003) Adsorptive removal of methylene blue from colored effluents on fuller's earth. Journal of Colloid and Interface Science, 261, 32-39.
  • [57] Mathialagan T., Viraraghavan T. (2002) Adsorption of cadmium from aqueous solutions by perlite. Journal of Hazardous Materials, 94 (3), 291-303.
  • [58] Chakravarty S., Dureja V., Bhattacharyya G., Maity S., Bhattacharjee S. (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36 (3), 625-632.
  • [59] USGS. 2020b. National Minerals Information Center: Peat Statistics and Information. 2016 Minerals Yearbook. Available at: https://prd-wret.s3-us-west-2.amazonaws. com/assets/palladium/production/atoms/files/myb1-2016-peat.pdf (accessed: January 2, 2020).
  • [60] Sharma D.C., Forster C.F. (1993) Removal of hexavalent chromium using sphagnum moss peat. Water Research, 27, 1201-1208.
  • [61] Tare V., Chaudhari S., Jawed M. (1992) Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water & Science Technology, 26 (1-2), 237-246.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171628752

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.