Warianty tytułu
Języki publikacji
Abstrakty
In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc. We establish some general limit formulas, where the product of the first n terms of these sequences appears. Furthermore, we prove some general limits that connect these sequences to the number e(≈ 2:71828:::).(original abstract)
Słowa kluczowe
Twórcy
autor
- Razi University Kermanshah, Iran
autor
- Universidad Nacional de Luján Luján, Buenos Aires, República Argentina
Bibliografia
- Bicknell M., A primer on the Pell sequence and related sequences, Fibonacci Quart. 13 (1975), 345-349.
- Bilgici a G. nd Sentürk T.D., Some addition formulas for Fibonacci, Pell and Jacobsthal numbers, Ann. Math. Sil. 33 (2019), 55-65.
- Farhadian R. and Jakimczuk R., Notes on a general sequence, Ann. Math. Sil. 34 (2020), 193-202.
- Horadam A.F., Pell identities, Fibonacci Quart. 9 (1971), 245-252, 263.
- Horadam A.F. and Mahon J.M., Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 7-20.
- Koshy T., Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
- Rey Pastor J., Pi Calleja P., and Trejo C.A., Análisis Matemático, Vol. 1, Editorial Kapelusz, Buenos Aires, 1969.
- Stakhov A.P, The golden section in the measurement theory, Comput. Appl. Math. 17 (1989), 613-638.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171628754