PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 2 | 19--29
Tytuł artykułu

Smart Packaging Technologies in Sustainable Food Supply Chain Management - a Review

Warianty tytułu
Inteligentne technologie pakowania w zrównoważonym zarządzaniu łańcuchem dostaw żywności - przegląd
Języki publikacji
EN
Abstrakty
EN
The depleting natural resources lead global economies to sustainable development. One way to solve this problem is the concept of circular economy in which each product goes through a full life cycle. This kind of closing the loop allows to reduce the consumption of natural resources and allows to a large extent to reuse them, among others through widely understood recycling. In accordance with the European Union guidelines contained in the Framework Directive on waste, waste should be followed in accordance with the waste hierarchy, which first indicates the reduction of waste generation. The amount of waste generated by the food production sector alone is as much as 1/3 of the total production, which is estimated at almost USD 1,000 billion and around 7% of greenhouse gas emissions. A large proportion of this waste is generated in cold supply chains. The introduction of more effective supply chain management as well as active and intelligent packaging (smart packaging) can significantly reduce food losses. The paper presents selected methods of supply chain management taking into account food, in particular cold supply chains. In addition, smart packaging of food products is presented, which support logistics processes, affect better traceability of products and provide added value in the transport process and food storage. (original abstract)
Kończące się zasoby naturalne prowadzi globalne gospodarki do zrównoważonego rozwoju. Jednym ze sposobów rozwiązania tego problemu jest koncepcja gospodarki o obiegu zamkniętym, w której każdy produkt przechodzi pełen cykl życia. To swoiste zamykanie pętli pozwala ograniczyć zużycie zasobów naturalnych i pozwala w dużej mierze na ich ponowne wykorzystanie m.in. poprzez szeroko pojęty recykling. Zgodnie z wytycznymi Unii Europejskiej zawartymi w Dyrektywie ramowej w sprawie odpadów należy postępować zgodnie z hierarchią odpadów, która na pierwszym miejscu wskazuje ograniczenie wytwarzania odpadów. Ilość odpadów generowanych przez sam sektor produkcji żywności wynosi aż 1/3 całkowitej produkcji, który szacuje się na prawie 1,000 bilion USD oraz około 7% emisji gazów cieplarnianych. Duża część tych odpadów generowana jest w chłodniczych łańcuchach dostaw. Wprowadzanie efektywniejszego zarządzania łańcuchami dostaw oraz opakowań aktywnych i inteligentnych może w dużej mierze przyczynić się do ograniczenia strat żywności. Artykuł prezentuje wybrane metody zarządzania łańcuchami dostaw z uwzględnieniem spożywczych, a w szczególności chłodniczych łańcuchów dostaw. Ponadto przedstawione są aktywne i inteligentne opakowania produktów żywnościowych, które wspomagają procesy logistyczne, wpływają na lepszą identyfikowalność produktów i stanowią wartość dodaną w procesie transportu i magazynowania żywności. (abstrakt oryginalny)
Rocznik
Numer
Strony
19--29
Opis fizyczny
Twórcy
  • Poznań University of Economics and Business
  • Poznań University of Economics and Business
Bibliografia
  • [1] Pant R.R., Prakash G., Farooquie J.A. (2015) A framework for traceability and transparency in the dairy supply chain networks. Procedia - Social and Behavioral Sciences, 189, 385-394.
  • [2] Trienekens J.H., Wognum P.M., Beulens A.J.M., van der Vorst J.G.A.J. (2012) Transparency in complex dynamic food supply chains. Advanced Engineering Informatics, 26 (1), 55-56.
  • [3] Dobon A., Cordero P., Kreft F., Østergaard S.R., Robertsson M., Smolander M., Hortal M. (2011) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. The International Journal of Life Cycle Assessment, 16, 168-177.
  • [4] Heising J.K., Claassen G.D.H., Dekker M. (2017) Options for reducing food waste by quality controlled logistics using intelligent packaging along the supply chain. Food Additives & Contaminants: Part A, 34 (10), 1672-1680.
  • [5] Adekomaya O., Jamiru T., Sadiku R., Huan Z. (2016) Sustaining the shelf life of fresh food in cold chain - A burden on the environment. Alexandria Engineering Journal, 55 (2), 1359-1365.
  • [6] Buisman M.E., Haijema R., Bloemhof-Ruwaard J.M. (2019) Discounting and dynamic shelf life to reduce fresh food waste at retailers. International Journal of Production Economics, 209, 274-284.
  • [7] Cerqueira M.A., Nurmi M., Gregor-Svetec D. (2018) Intelligent Packaging. Industry Leaflet. http://www.actinpak.eu/leaflets-intelligent-packaging (accessed: 01.02.2020)
  • [8] Fu B., Labuza T.P. (1992) Considerations for the application of time-temperature integrators in food distribution. Journal of Food Distribution Research, Food Distribution Research Society, 23 (1), 9-17.
  • [9] Taoukis P.S. (2010) Commercialization of time-temperature integrators for foods. In: Doona C.J., Kustin K., Feeherry F.E. (eds.) Case studies in novel food processing technologies. Innovations in Processing, Packaging, and Predictive Modelling. Woodhead Publishing Ltd., Cambridge, pp. 351-366.
  • [10] Eden, M., Raab, V., Kreyenschmidt, J., Hafliðason, T., Olafsdóttir, G., Bogason, S.G. (2011). Continuous temperature monitoring along the chilled food supply chain. In: Hoorfar, J., Jordan, K., Butler, F., Prugger, R., (Eds.) Food chain integrity. A holistic approach to food traceability, safety, Quality and authenticity, Cambridge: Woodhead Publishing Ltd., 115-129.
  • [11] Guritno A.D., Fujianti R., Kusumasari D. (2015) Assessment of the supply chain factors and classification of inventory management in suppliers' level of fresh vegetables. Agriculture and Agricultural Science Procedia, 3, 51-55.
  • [12] Tanner D. (2016) Refrigerated transport. Reference Module in Food Science, 1-7.
  • [13] Hsu C.I., Chen W.T. (2014) Optimizing fleet size and delivery scheduling for multitemperature food distribution. Applied Mathematical Modelling, 38, 1077-1091.
  • [14] Regulation (EC) No. 1935/2004 of the European Parliament and of the Council on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC.
  • [15] Regulation (EC) No 450/2009 of the European Parliament and of the Council on active and intelligent materials and articles intended to come into contact with food.
  • [16] Antunez P.D., Omary M.B., Rosentrater K.A., Pascall M., Winstone L. (2012) Effect of an oxygen scavenger on the stability of preservative-free flour tortillas. Journal of Food Science, 77 (1), S1-S9.
  • [17] Kartal, S., Aday M.S., Caner, C. (2012) Use of microperforated films and oxygen scavengers to maintain storage stability of fresh strawberries. Postharvest Biology and Technology, 71, 32-40.
  • [18] Cichello S.A. (2015) Oxygen absorbers in food preservation: a review. Journal of Food Science and Technology-Mysore, 52 (4), 1889-1895.
  • [19] Mexis S.F., Kontominas M.G. (2010) Effect of oxygen absorber, nitrogen flushing, packaging material oxygen transmission rate and storage conditions on quality retention of raw whole unpeeled almond kernels (Prunus Dulcis). LWT-Food Science And Technology, 43 (1), 1-11.
  • [20] Santagostino S., Mascheroni E., Franzetti L., Adobati A., Uboldi E., Limbo S. (2011) Shelf-life study of case-ready meat in a low oxygen system by means of oxygen scavengers and modified atmosphere packaging. Italian Journal of Food Science, 23 (SI), 3-6.
  • [21] Limbo S., Uboldi E., Adobati A., Iametti S., Bonomi F., Mascheroni E., Santagostino S., Powers T.H., Franzetti L., Piergiovanni L. (2013) Shelf life of case-ready beef steaks (Semitendinosus Muscle) stored in oxygen-depleted master bag system with oxygen scavengers and CO2/N2 modified atmosphere packaging. Meat Science, 93 (3), 477-484.
  • [22] Foltynowicz Z., Kozak W., Fiedorow R. (2002) Studies of oxygen uptake on O2 scavengers prepared from different iron-containing parent substances. Packaging Technology and Science, 15 (2), 75-81.
  • [23] Miltz J., Perry M. (2005) Evaluation of the performance of iron-based oxygen scavengers, with comments on their optimal applications. Packaging Technology and Science, 18 (1), 21-27.
  • [24] Byun Y., Darby D., Cooksey K., Dawson P., Whiteside S. (2011) Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chemistry, 124 (2), 615-619.
  • [25] Yildirim S., Röcker B., Rüegg N., Lohwasser W. (2015) Development of palladiumbased oxygen scavenger: optimization of substrate and palladium layer thickness. Packaging Technology and Science, 28 (8), 710-718.
  • [26] Janjarasskul T., Tananuwong K., Krochta J.M. (2011) Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. Journal of Food Science, 76 (9), E561-E568.
  • [27] Anthierens T., Ragaert P., Verbrugghe S., Ouchchen A., De Geest B.G., Noseda B., Mertens J., Beladjal L., De Cuyper D., Dierickx W., Du Prez F., Devlieghere F. (2011) Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innovative Food Science & Emerging Technologies, 12 (4), 594-599.
  • [28] Johansson K., Christophliemk H., Johansson C., Jönsson L.J., Järnström L. (2013) The effects of coating structure and water-holding capacity on the oxygen-scavenging ability of enzymes embedded in the coating layer. Tappi Journal, 12 (6), 43-52.
  • [29] Mu H., Gao H., Chen H., Fei Tao F., Fang X., Ge L. (2013) A nanosized oxygen scavenger: preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chemistry, 136 (1), 245-250.
  • [30] Busolo M.A., Lagaron J.M. (2012) Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging Technologies, 16, 211-217.
  • [31] Byun, Y., Bae, H.J., Whiteside, S. (2012). Active warm-water fish gelatin film containing oxygen scavenging system, Food Hydrocolloids, 27(1), 250-255.
  • [32] Saengerlaub S., Gibis D., Kirchhoff E., Tittjung M., Schmid M., Müller K. (2013) Compensation of pinhole defects in food packages by application of iron-based oxygen scavenging multilayer films. Packaging Technology and Science, 26 (1), 17-30.
  • [33] Damaj, Z., Joly C., Guillon E. (2015) Toward new polymeric oxygen scavenging systems: formation of poly(vinyl alcohol) oxygen scavenger film. Packaging Technology and Science, 28 (4), 293-302.
  • [34] Joven R., Garcia, A., Arias, A., Medina, J. (2015). Development of an active thermoplastic film with oxygen scavengers made of activated carbon and sodium erythorbate, Packaging Technology And Science, 28(2), 113-121.
  • [35] Gohil R.M., Wysock W.A. (2014) Designing efficient oxygen scavenging coating formulations for food packaging applications. Packaging Technology and Science, 27 (8), 609-623.
  • [36] Wilson C.L. (2007) Intelligent and active packaging for fruits and vegetables. CRC Press, Boca Raton.
  • [37] Kerry, J., Butler, P. (2008). Smart packaging technologies for fast moving consumer goods, John Wiley & Sons Ltd, Chichester.
  • [38] Cierpiszewski R. (2016) Opakowania aktywne i inteligentne. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
  • [39] Butler P. (2001) Smart packaging - intelligent packaging for food, beverages, pharmaceuticals and household products. Materials World, 9 (3), 11-13.
  • [40] Krysińska N., Cierpiszewski R., Tichoniuk M. (2013) Volatile amines as a food product freshness indicator in smart packaging. In: Czaja-Jagielska N. (red.) Current Trends in Commodity Science: Packaging and Ecology, Poznan University of Economics, Poznań, pp. 51-66.
  • [41] Krysińska N., Tichoniuk M., Cierpiszewski R. (2014) Wskaźniki ditlenku węgla przeznaczone do monitorowania świeżości żywności. Opakowanie, 6, 71-74.
  • [42] Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food, Chemical Society Reviews, 34(12), 1003-1011.
  • [43] Borisov S.M., Zenkl G., Klimant I. (2010) Phosphorescent platinum(II) and palladium( II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing. ACS Applied Materials & Interfaces, 2 (2), 366- 374.
  • [44] Zabala S., Castán J., Martínez C. (2015) Development of a time-temperature indicator (TTI) label by rotary printing technologies. Food Control, 50, 57-64.
  • [45] Albrecht A. , Ibald R., Raab V., Reichstein V., Haarer D., Kreyenschmidt J. (2019) Implementation of time temperature indicators to improve temperature monitoring and support dynamic shelf life in meat supply chains. Journal of Packaging Technology and Research, 4, 23-32.
  • [46] McMillin K.W. (2017) Advancements in meat packaging. Meat Science, 132, 153-162.
  • [47] Fang Z., Zhao Y., Warner R.D., Johnson S.K. (2017) Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71.
  • [48] Smits E., Schram J., Nagelkerke M., Kusters R., van Heck G., van Acht V., Koetse M., van den Brand J., Gelinck G., School H. (2012) Development of printed RFID sensor tags for smart food packaging. IMCS 2012 - The 14th International Meeting on Chemical Sensors, pp. 403-406.
  • [49] Unander T., Siden J. , Nilsson H. (2011) Designing of RFID-based sensor solution for packaging surveillance applications. IEEE Sensors Journal, 11 (11), 3009-3018.
  • [50] Fang Z., Zhao Y., Warner R.D., Johnson S.K. (2017).Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171629034

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.