PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 2 | 30--38
Tytuł artykułu

The Use of Optical Oxygen Measurement Method for Quality Control and Development of Opaque Packaging

Autorzy
Warianty tytułu
Wykorzystanie optycznej metody pomiaru tlenu do kontroli jakości i rozwoju opakowań nieprzezroczystych
Języki publikacji
EN
Abstrakty
EN
The work presents an optical method of measuring the amount of oxygen using selective fluorescence quenching and its application to assess the quality of opaque packaging. The principle of the method, calibration of oxygen sensors, advantages and limitations as well as areas of application in packaging were presented. In addition, as part of the work, an experimental comparison of oxygen measurements made by fluorescence in transparent and opaque packaging was performed, using a special invasive adapter and dedicated measurements needles. On this basis, the usefulness of the optical method for assessing the quality of opaque packaging, which accounts for a significant share of packaging used in modern packaging, was assessed. (original abstract)
Praca prezentuje optyczną metodę pomiarów ilości tlenu wykorzystującą selektywne wygaszanie fluorescencji oraz jej zastosowanie do oceny jakości opakowań nieprzezroczystych. Przybliżono zasadę działania metody, sposób kalibracji sensorów tlenu, zalety i ograniczenia oraz obszary zastosowań w opakowalnictwie. Dodatkowo w ramach pracy dokonano eksperymentalnego porównania pomiarów ilości tlenu wykonanych metodą fluorescencyjną w opakowaniach przezroczystych i nieprzezroczystych, wykorzystując specjalny adapter inwazyjny i dedykowane igły pomiarowe. Na tej podstawie oceniono przydatność metody optycznej do oceny jakości opakowań nieprzezroczystych, które stanowią znaczny udział opakowań wykorzystywanych w nowoczesnym opakowalnictwie. (abstrakt oryginalny)
Rocznik
Numer
Strony
30--38
Opis fizyczny
Twórcy
  • Poznań University of Economics and Business
Bibliografia
  • [1] Charlesworth J.M. (1994) Optical sensing of oxygen using phosphorescence quenching. Sensors and Actuators B-Chemical, 22 (1), 1-5.
  • [2] Anni M., Rella R. (2010) Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films. Journal of Physical Chemistry B, 114 (4), 1559-1561.
  • [3] Kozak W. (2011) Application of fluorescence in measuring oxygen concentration in packages. Chemik, 7, 627-632.
  • [4] Kozak W. (2013) The use of selective fluorescence quenching for oxygen content determination in packaging atmosphere. In: Czaja-Jagielska N. (red.) Current Trends in Commodity Science: Packaging and Ecology. Poznań University of Economics, Poznań, pp. 40-50.
  • [5] Papkovsky D.B., Dmitriev R.I. (2018) Quenched-phosphorescence detection of molecular oxygen: applications in life sciences. Royal Society of Chemistry, London.
  • [6] Lopez-Gejo J., Haigh D., Orellana G. (2010) Relationship between the microscopic and macroscopic world in optical oxygen sensing: a luminescence lifetime microscopy study, Langmuir, 26 (3), 2144-2150.
  • [7] Shen L., Ratterman, M., Klotzkin D., Papautsky I. (2011) A CMOS Optical detection system for point-of-use luminescent oxygen sensing. Sensors and Actuators B-Chemical, 155 (1), 430-435.
  • [8] Chu C.S., Chu S.W. (2014) Portable optical oxygen sensor based on time-resolved fluorescence. Applied Optics, 53 (32), 7657-7663.
  • [9] Kadish, K.M., Smith, K.M., Guilard, R. (2011). Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, Vol. 12, World Scientific, Singapore.
  • [10] Mills A. (1998). Optical sensors for oxygen: a log-gaussian multisite-quenching model. Sensors And Actuators B-Chemical, 51 (1-3), 69-76.
  • [11] Mills, A. (1999) Response characteristics of optical sensors for oxygen: a model based on a distribution in tau(o) and kappa(q). Analyst, 124 (9), 1309-1314.
  • [12] Amao Y., Ishikawa Y., Okura I. (2001) Green luminescent iridium(III) complex immobilized in fluoropolymer film as optical oxygen-sensing material. Analytica Chimica Acta, 445 (2), 177-182.
  • [13] Amao Y., Okura I. (2009) Optical oxygen sensor devices using metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 13 (11), 1111-1122.
  • [14] Borisov S.M., Zenkl G., Klimant I. (2010) Phosphorescent platinum(II) and palladium( II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing. ACS Applied Materials & Interfaces, 2 (2), 366-374.
  • [15] Hong H., Zhu L., Wang A., Lu H. (2012) Re(I) complex doped nanofibers for oxygen optical sensing, Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy, 98, 466-473.
  • [16] Koren K., Borisov S.M., Klimant I. (2012) Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins - a convenient way to eliminate dye migration and leaching. Sensors and Actuators BChemical, 169, 173-181.
  • [17] Chu C.S. (2013) Optical fiber oxygen sensor based on Pd(II) complex embedded in solgel matrix, Journal of Luminescence, 135, 5-9.
  • [18] Pulido C., Esteban O. (2013) Tapered polymer optical fiber oxygen sensor based on fluorescence-quenching of an embedded fluorophore. Sensors and Actuators B-Chemical, 184, 64-69.
  • [19] Yang C.L., Fang H.M., Huang S.J., Young K.C., Yu C.K. (2013) Miniaturized real-time oxygen detection systems integrated with optical fiber by doping Ru-based fluorescence sensors. Journal of Medical and Biological Engineering, 33 (1), 117-123.
  • [20] Hutter L.H., Mueller B.J., Koren K., Borisov S.M., Klimant I. (2014) Robust optical oxygen sensors based on polymer-bound NIR-emitting platinum(II)-benzoporphyrins. Journal of Materials Chemistry C, 2 (36), 7589-7598.
  • [21] Elosua C., de Acha N., Hernaez M., Matias I.R., Arregui F.J. (2015) Layer-by-layer assembly of water-insoluble Platinum complex for optical fiber oxygen sensors. Sensors and Actuators B-Chemical, 207, 683-689.
  • [22] DiMarco G., Lanza M. (2000) Optical solid-state oxygen sensors using metalloporphyrin complexes immobilized in suitable polymeric matrices. Sensors and Actuators B-Chemical, 63 (1-2), 42-48.
  • [23] Florescu M., Katerkamp A. (2004) Optimisation of a polymer membrane used in optical oxygen sensing. Sensors and Actuators B-Chemical, 97 (1), 39-44.
  • [24] Anastasova, S., Milanova, M., Kashchieva, Funakubo, H., Kamo, T., Grozev, N., Stefanov P., Todorovsky D. (2008) Morphology of sol-gel produced composite films for optical oxygen sensors. Applied Surface Science, 254 (6), 1545-1558.
  • [25] Kim H.J., Jeong Y.C., Rhee J.I. (2008) Encapsulation of tris(4,7-diphenyl-1,10-phenanthroline) Ruthenium(II) complex linked with dendrons in sol-gels: stable optical sensing membranes for dissolved oxygen. Talanta, 76 (5), 1070-1076.
  • [26] Oter O., Ertekin K., Derinkuyu S. (2009) Photophysical and optical oxygen sensing properties of tris(bipyridine)ruthenium(II) in ionic liquid modified sol-gel matrix. Materials Chemistry and Physics, 113 (1), 322-328.
  • [27] Scheicher S.R., Kainz B., Köstler S., Suppan M., Bizzarri A., Pum D., Sleytr U.B., Ribitsch V. (2009) Optical oxygen sensors based on Pt(II) porphyrin dye immobilized on s-layer protein matrices. Biosensors & Bioelectronics, 25 (4), 797-802.
  • [28] Khan M.A., Mohan K., Dharamsi A.N. (2010) Optical pathlength saturation signatures in wavelength modulation spectroscopy signals of atmospheric molecular oxygen. Applied Physics B-Lasers and Optics, 99 (1-2), 363-369.
  • [29] Tripathi V.S., Lakshminarayana G. Nogami M. (2010) Optical oxygen sensors based on platinum porphyrin dyes encapsulated in ORMOSILS. Sensors and Actuators BChemical, 147 (2), 741-747.
  • [30] Chu C.S. (2011) Optical oxygen sensing properties of Ru(II) complex and porous silica nanoparticles embedded in solgel matrix. Applied Optics, 50 (25), E145-E151.
  • [31] Liu Y., Li B. Cong Y. (2011) Optical oxygen sensing materials based on a novel dirhenium(I) complex assembled in mesoporous silica. Journal of Luminescence, 131 (4), 781-785.
  • [32] Goodpaster J.V., Mcguffin V.L. (1999) Rapid and accurate determination of Stern- Volmer quenching constants. Applied Spectroscopy, 53 (8), 1000-1008.
  • [33] Choi M.M.F., Xiao D. (2000) Single standard calibration for an optical oxygen sensor based on luminescence quenching of a ruthenium complex. Analytica Chimica Acta, 403 (1-2), 57-65.
  • [34] Hengel R., Reithmayer K. (2012) Innovations in optical dissolved oxygen sensors. American Laboratory, 44 (4), 40-42.
  • [35] Zajko S., Klimant I. (2013) The effects of different sterilization procedures on the optical polymer oxygen sensors. Sensors and Actuators B-Chemical, 177, 86-93.
  • [36] Templeton A.C., Han Y.H.R., Mahajan R., Chern R.T., Reed R.A. (2002) Rapid headspace oxygen analysis for pharmaceutical packaging applications. Pharmaceutical Technology, 7, 44-61.
  • [37] ASTM F3136-15, 2015, Standard test method for oxygen gas transmission rate through plastic film and sheeting using a dynamic accumulation method.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171629042

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.