PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 4 | 60--75
Tytuł artykułu

Environmental Management Through Example of Polysaccharide Materials Using in Water Treatment

Warianty tytułu
Zarządzanie środowiskiem na przykładzie zastosowania materiałów polisacharydowych w oczyszczaniu wody
Języki publikacji
EN
Abstrakty
EN
Life cycle assessment belongs to the product management. The conditions under which a new product is designed, produced, sold and recycled change over time. Therefore, these stages of the product lifecycle should be managed continuously. The material, which is made, influences the environment, but mainly the water environment. On a daily basis people use a wide variety of polymeric materials that, at the end of their life, can pollute the environment. At the same time, they can be used for its purifying as well. Traditionally, the synthetic polymers are used for water treatment. However currently, the scientists are looking for new, more effective, environmentally friendly and economically beneficial methods of purifying the water which surrounds us. It was considered that the traditional materials used for water cleaning could be modified by polysaccharides, e.g. by cellulose, starch, chitin or chitosan. These polysaccharides are originated from natural resources and they have specific, required properties, useful for water treatment. The abovementioned materials are increasingly used as substances in the water purification process in, e.g. desalination, filtration by membrane or as water disinfectants. These natural polymers exhibit non-toxic and compatible properties in relation to the natural environment; they are inexpensive. However, their mechanical properties are low. Thus, it is beneficial to use them as modifiers of synthetic polymers, inorganic or nanoparticle materials. Therefore, the polysaccharide materials influence an aquatic environment quality by the water resources purification. The application of polysaccharide materials for water treatment, in accordance with the principles of sustainable environmental management, is discussed in this review article. (original abstract)
Ocena cyklu życia produktu jest jednym z elementów jego zarządzania. Warunki, w jakich nowy produkt jest projektowany, produkowany, sprzedawany i poddawany recyklingowi, zmieniają się z czasem. Dlatego te etapy cyklu życia produktu powinny być zarządzane w sposób ciągły. Na co dzień ludzie używają różnorodnych materiałów polimerowych, które pod koniec życia mogą zanieczyścić środowisko. Jednocześnie jednak materiały te można również wykorzystać do jego oczyszczania. Tradycyjnie to syntetyczne polimery są jednym z materiałów używanych do oczyszczania wody. Obecnie naukowcy poszukują nowych, skuteczniejszych, bardziej ekologicznych i korzystniejszych ekonomicznie metod oczyszczania wody. Uznano, że tradycyjne materiały stosowane do oczyszczania wody modyfikować można polisacharydami, np. celulozą, skrobią, chityną lub chitozanem. Wymienione polisacharydy pochodzą z zasobów naturalnych i posiadają właściwości przydatne w procesach oczyszczania wody, m.in. podczas odsalania i filtracji przez membrany, a także w zastosowaniu jako środki do dezynfekcji wody. Te naturalne polimery są nietoksyczne, kompatybilne w stosunku do środowiska naturalnego i jednocześnie niedrogie. Jednak ich właściwości mechaniczne są dość niskie. Korzystne jest zatem stosowanie ich jako modyfikatorów polimerów syntetycznych, materiałów nieorganicznych lub nanocząsteczkowych. Zatem materiały polisacharydowe wpływają na jakość środowiska wodnego poprzez oczyszczanie wody. W niniejszym artykule przeglądowym omówiono zastosowanie materiałów polisacharydowych do oczyszczania wody zgodnie z zasadami zrównoważonego zarządzania środowiskowego. (abstrakt oryginalny)
Rocznik
Numer
Strony
60--75
Opis fizyczny
Twórcy
  • Gdynia Maritime University
  • Gdynia Maritime University
Bibliografia
  • [1] Robbins S.P., DeCenzo D.A. (2002) Podstawy zarządzania. Polskie Wydawnictwo Ekonomiczne, Warszawa.
  • [2] Kotler P. (1994) Marketing. Analiza, planowanie, wdrażanie i kontrola. Wydawnictwo Felberg SJA, Warszawa.
  • [3] Howarth G., Hadfield M. (2006) A sustainable product design model. Materials & Design, 27 (10), 1128-1133.
  • [4] Stark J. (2011) Product lifecycle management 21st Century paradigm for product realization. Springer, Switzerland.
  • [5] Stark J. (2015) Product lifecycle management. Springer, Switzerland.
  • [6] Olivier J., Myriam S.S., Shanna S., Alexandre J., Pierre C. (2016) Environmental life cycle assessment. CRC Press Taylor & Francis Group, Boca Raton.
  • [7] Rieger B., Kunkel A., Coates G.W., Reichardt R., Dinjus E., Zevaco T.A. (2012) Synthetic biodegradable polymers. Springer, Verlag Berlin Heidelberg.
  • [8] Braun D., Cherdron H., Rehahn M., Ritter H., Voit B. (2013) Polymer synthesis: theory and practice. Springer, Verlag Berlin Heidelberg.
  • [9] Brzeska J. (2018) Quality creation of the polyurethane materials. Polish Journal of Commodity Science, 3 (56), 32-38.
  • [10] Nierzwicki W. (2006) Zarządzanie środowiskowe. Polskie Wydawnictwo Ekonomiczne, Warszawa.
  • [11] Shen L., Patel M.K. (2008) Life cycle assessment of polysaccharide materials: a review. Journal of Polymers and the Environment, 16, 154-167.
  • [12] Ho T.H., Tang Ch. (1998) Product variety management research advances. Springer, New York.
  • [13] Bukharova E.A., Tatarintseva E.A., Ol'shanskaya L.N. (2015) Production of polyethylene terephthalate based sorbent and its use for waste and surface water cleaning from oil products. Chemical and Petroleum Engineering, 50, 595-599.
  • [14] UNESCO (2019) The United Nations World Water Development Report 2019, Leaving no one behind. United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000367306 (accessed: 7 November 2019).
  • [15] Bolałek J., Radke B. (2010) Aspekty zanieczyszczeń w portach położonych w pobliżu ujścia rzeki na przykładzie portów w Gdańsku i Kłajpedzie. Prace i Studia Geograficzne, 44, 249-265.
  • [16] Taka A.L., Pillay K., Mbianda X.Y. (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydrate Polymers, 159, 94-107.
  • [17] Schmidt M, Breite D, Thomas I, Went M, Prager A, Schulze A (2018) Polymer membranes for active degradation of complex fouling mixtures. Journal of Membrane Science, 563 : 481-491.
  • [18] Tijing L.D., Dizon J.R.C., Ibrahim I., Nisay A.R.N., Shon H.K., Advincula R.C. (2019) 3D printing for membrane separation, desalination and water treatment. Applied Materials Today, 18, 100486.
  • [19] Wang Z., Cuib F., Pana Y., Houa L., Zhanga B., Lib Y., Zhua L. (2019) Hierarchically micro-mesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water. Carbohydrate Polymers, 213, 352-360.
  • [20] Mokhena T.C., Jacobs V., Luyt A.S. (2015) A review on electrospun bio-based polymers for water treatment. Express Polymer Letters, 9, 839-880.
  • [21] Ahmad R. (2017) US water regulations and India's water challenges. American Water Works Association, 109 (3), 64-67.
  • [22] Bichai F., Ashbolt N. (2017) Public health and water quality management in low-exposure stormwater schemes: A critical review of regulatory frameworks and path forward. Sustainable Cities and Society, 28, 453-465.
  • [23] Das R. (2019) Polymerics materials for clean water. Springer, Switzerland.
  • [24] Nawrocki J. (2010) Uzdatnianie wody: procesy fizyczne, chemiczne i biologiczne. Wydawnictwo Naukowe PWN, Warszawa.
  • [25] UNESCO (2009) Water in a changing world. United Kingdom. http://www.unesco. org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr3-2009/downloadswwdr3/ (accessed: 7 November 2019).
  • [26] Oladoja N.A., Unuabonah E.I., Amuda O.S., Kolawole O.M. (2017) Polysaccharides as green and sustainable resources for water and wastewater treatment. Springer, Switzerland.
  • [27] Gomez-Maldonado D., Erramuspe I.B.V., Peresin M.S. (2019) Natural polymers as alternative adsorbents and treatment agents for water remediation. BioRecourcues, 14 (4), 10093-10160.
  • [28] Daughton Ch.D. (2004) Non-regulated water contaminants: emerging research. Environmental Impact Assessment, 24, 711-732.
  • [29] Hariharan C. (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General, 304, 55-61.
  • [30] Bratby J. (2006) Coagulation and flocculation in water and wastewater treatment. IWA Publishing, London.
  • [31] Ulbricht M. (2006) Advanced functional polymer membranes. Polymer, 47, 2217-2262.
  • [32] Cox M., Negre P., Yurramendi L. 2007. Industrial liquid effluents. INASMET-Tecnalia and European Commission, San Sebastian.
  • [33] Lichtfouse E., Morin-Crini N., Fourmentin M., Zemmouri H., Nascimento I.O.dC., Queiroz L.M., Tadza M.Y.M., Picos-Corrales L.A., Pei H., Wilson L.D., Crini G. (2019) Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 17 : 1603-1621.
  • [34] Ng L.Y., Mohammad A.W., Leo C.P., Hilal N. (2013) Polymerics membranes incurporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination, 308, 15-33.
  • [35] Liu Z., Lompe K.M., Mohseni M., Berube P.R., Sauve S., Barbeau B. (2020) Biological ion exchange as an alternative to biological activated carbon for drinking water treatment. Water Research, 168, 115148.
  • [36] Ikeda T., Yamaguchi H., Tazuke S. (1984) New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrobial Agents Chemotherapy, 26, 139-144.
  • [37] Mazumder M.A.J., Sheardown H., Al.-Ahmed A. (2019) Functional biopolymers. Springer, Switzerland.
  • [38] Visakh P.M., Thomas S. (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valorization, 1, 121-134.
  • [39] Ramawat K.G., Merillon J.M. (2015) Polysaccharides bioactivity and biotechnology. Springer, Switzerland.
  • [40] Olatunji O. (2016) Natural polymers industry techniques and applications. Springer, Switzerland.
  • [41] Thomas M.S., Koshy R.R., Mary S.K., Thomas S., Pothan L.A. (2019) Starch, chitin and chitosan based composites and nanocomposites. Springer, Switzerland.
  • [42] Mucha M. (2010) Chitozan wszechstronny polimer ze źródeł odnawialnych. Wydawnictwo Naukowo-Techniczne, Polska.
  • [43] Gardner R.M., Buchanan Ch.M., Komarek R., Dorschel D., Boggs Ch., White A.W. (1994) Composability of cellulose acetate films. Journal of Applied Polymer Science, 52, 1477-1488.
  • [44] Choi J.H., Fukushi K., Yamamoto K. (2007) A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Separation and Purification Methods, 52, 470-477.
  • [45] Sabir A., Shafiq M., Islam A., Sarwar A., Dilshad M.R., Shafeeq A., Butt M.T.Z., Jamil T. (2015) Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydrate Polymers, 132, 589-597.
  • [46] Narbaitz R.M., Rana D., Dang H.T., Morrissette J., Matsuura T., Jasim S.Y., Tabe S., Yang P. (2013) Pharmaceutical and personal care product removal from drinking water by modified cellulose acetate membrane: field testing. Chemical Engineering Journal, 225, 848-856.
  • [47] Amy G., Ghaffour N., Li Z., Francis L., Linares R.V., Missimer T., Lattemann S. (2017) Membrane-based seawater desalination: present and future prospects. Desalination, 401, 16-21.
  • [48] Lei Ch., Gao J., Ren W., Xie Y., Abdalkarim S.Y.H., Wang S., Ni Q., Yao J. (2019) Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydrate Polymers, 205, 35-41.
  • [49] Olad A., Bastanian M., Hagh H.B.K. (2019) Thermodynamic and kinetic studies of removal process of hexavalent chromium ions from water by using bio-conducting starch-montmorillonite/polyaniline nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 29, 1916-1926.
  • [50] Delval F., Crini G., Janus L., Vebrel J., Morcellet M. (2001) Novel crosslinked gels with starch derivatives. Polymer-water interactions. Applications in waste water treatment. Macromolecular Symposia, 166, 103-108.
  • [51] Alzate-Sanchez D.M., Ling Y., Li Ch., Frank B.P., Bleher R., Fairbrother D.H., Helbling D.E., Dichtel W.R. (2019) β-cyclodextrin polymers on microcrystalline cellulose as a granular media for organic micropollutant removal from water. ACS Applied Materials and Interfaces, 11, 8089-8096.
  • [52] Zhang H., Li Y.X., Wang P.L., Zhang Y., Cheng B.W., Sun Q.M., Li F. (2019) Synthesis of β-cyclodextrin immobilized starch and its application for the removal of dyestuff from waste-water. Journal of Polymers and the Environment, 27, 929-941.
  • [53] Austin P.R., Castle J.E., Albisetti C.J. (1989) Chitin and chitosan. Elsevier, London, New York.
  • [54] Atangana E., Oberholster P.J. (2020) Modified biopolymer (chitin-chitosan derivatives) for the removal of heavy metals in poultry wastewater. Journal of Polymers and the Environment, 28, 388-398.
  • [55] Peralta M.E., Nistico R., Franzoso F., Magnacca G., Fernandez L., Parolo M.E., Leon E.G., Carlos L. (2019) Highly efficient removal of heavy metals from waters by magnetic chitosan-based composite. Adsorption, 25, 1337-1347.
  • [56] Subedi N., Lahde A., Abu-Danso E., Iqbal J., Bhatnagar A. (2019) A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. International Journal of Biological Macromolecules, 137, 948-959.
  • [57] El Rouby W.M.A., Farghali A.A., Sadek M.A., Khalil W.F. (2018) Fast removal of Sr(II) from water by graphene oxide and chitosan modified graphene oxide. Journal of Inorganic and Organometallic Polymers and Materials, 28, 2336-2349.
  • [58] Liu Y., L iu R., L i M ., Yu F ., H e C h. ( 2019) R emoval o f p harmaceuticals b y n ovel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydrate Polymers, 220, 141-148.
  • [59] Badforuzi S.R., Hadjmohammadi M.R. (2019) Modified magnetic chitosan nanoparticles based on mixed hemimicelle of sodium dodecyl sulfate for enhanced removal and trace determination of three organophosphorus pesticides from natural waters. Analytica Chimica Acta, 1078, 90-100.
  • [60] Al-Manhel A.J., Al-Hilphy A.R.S., Niamah A.K. (2018) Extraction of chitosan, characterisation and its use for water purification. Journal of the Saudi Society of Agricultural Sciences, 17 (2), 186-190.
  • [61] Bakri B., Selintung M., Hamdani R.N., Ihsan M., Arai Y. (2019) The effectiveness of PAC and chitosan usage in Jeneberang river raw water treatment. IOP Conference Series: Materials Science and Engineering, 676, 012028.
  • [62] Abebe L.S., Chen X., Dobsey M.D. (2016) Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment. International Journal of Environmental Research and Public Health, 13 (3), 269-279.
  • [63] Kamal W., El Rouby W.M.A., El-Gendy A.O., Farghali A.A. (2018) Bimodal applications of LDH-chitosan nanocomposite: water treatment and antimicrobial activity. IOP Conference Series: Materials Science and Engineering, 464, 012005.
  • [64] Gopi S., Pius A., Kargl R., Kleinschek K.S., Thomas S. (2019) Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polymer Bulletin, 76, 1557-1571.
  • [65] Janesch J., Jones M., Bacher M., Kontturi E., Bismarck A., Mautner A. (2020) Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. Reactive and Functional Polymers, 146, 104428.
  • [66] Li Y., Guo C., Shi R., Zhang H., Gong L., Dai L. (2019) Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb(II) ions from aqueous solution. Carbohydrate Polymers, 223, 115048.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171629626

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.