PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 1--231
Tytuł artykułu

Wielowymiarowe modele odpowiedzi na pozycje testowe w badaniach społeczno-ekonomicznych

Warianty tytułu
Języki publikacji
PL
Abstrakty
Testy i kwestionariusze należą do najczęściej stosowanych przez badaczy narzędzi pomiarowych. Tego typu metody zbierania informacji od respondentów są wykorzystywane przede wszystkim w celu opisania badanego testem zjawiska i pełnią dwie podstawowe funkcje. Pierwsza z nich to funkcja opisowa, dzięki której opisuje się parametry modelu, a druga to funkcja prognostyczna pozwalająca przewidywać charakter badanych zjawisk w przyszłości. Testy składają się z zestawu pytań wywołujących określone rodzaje zachowań, które zbierane są w postaci odpowiedzi respondentów, będących wskaźnikiem liczbowym poddanym dalszej analizie. Konstrukcja, analiza oraz interpretacja odpowiedzi respondentów na pytania testowe zwane pozycjami testowymi, jest zjawiskiem trudnym i złożonym. Proces ten wymaga od badacza pewnego poziomu wiedzy w wielu obszarach, takich jak przygotowanie testu, przeprowadzenie badania, zebranie informacji, a na końcu interpretacja wyników. Metody poświęcone analizie pozycji testowych od połowy XX w. dotyczyły badania jego rzetelności i trafności. Niestety, tego typu procedury są niewystarczające i nie pozwalają na kompleksową analizę pozycji testowych, gdyż cechują się licznymi ograniczeniami i wadami. Skuteczną i efektywną metodą jest jednak analiza odpowiedzi na pozycje testowe (item response theory - IRT), która pozwala na jednoczesną analizę zarówno pozycji testowych (zadań, pytań), jak i cech opisujących poziom umiejętności (zdolności respondentów poddanych badaniu). Dodatkowo, jedną z najważniejszych unikalnych cech opisywanej metody okazuje się możliwość uwzględnienia w modelu zmiennych ukrytych, będących wspólnymi abstrakcyjnymi konstruktami leżącymi u podstaw każdego kwestionariusza testowego, który wpływa na odpowiedzi udzielane przez respondentów. Odpowiedzi te noszą nazwę obserwowalnych wskaźników i w metodzie IRT pełnią funkcję zmiennych obserwowalnych. (fragment tekstu)
Rocznik
Strony
1--231
Opis fizyczny
Twórcy
  • Uniwersytet Ekonomiczny w Katowicach
Bibliografia
  • Ackerman T.A. (1989), Unidimensional IRT Calibration of Compensatory and Noncompensatory Multidimensional Items, "Applied Psychological Measurement", Vol. 13(2), s. 113-127.
  • Ackerman T.A. (1994), Using Multidimensional Item Response Theory to Understand What Items and Tests Are Measuring, "Applied Measurement in Education", Vol. 7, s. 255-278.
  • Ackerman T.A. (1996), Graphical Representation of Multidimensional Item Response Theory Analysis, "Applied Psychological Measurement", Vol. 20, s. 311-329.
  • Ackerman T.A., Gierl M.J., Walker C.M. (2003), Using Multidimensional Item Response Theory to Evaluate Educational and Psychological Tests, "Educational Measurement: Issues and Practice",Vol. 22, s. 37-53.
  • Adams E.W., Fagot R.F., Robinson R.E. (1965), A Theory of Appropriate Statistics, "Psychometrika", Vol. 30, 99-127.
  • Adams R.J., Wilson M., Wang W. (1997), The Multidimensional Random Coefficients Multinomial Logit Model, "Applied Psychological Measurement", Vol. 21, s. 1-24.
  • Akaike H. (1974), A New Look at the Statistical Model Identification, "IEEE Transactions on Automatic Control", Vol. 19(6), s. 716-723.
  • Anastasi A., Urbina S. (1999), Testy psychologiczne, Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego, Warszawa.
  • Anderberg M.R. (1973), Cluster Analysis for Applications, Academic Press, New York, San Francisco, London.
  • Andersen E.B. (1970), Asymptotic Properties of Conditional Maximum Likelihood Estimates, "The Journal of the Royal Statistical Society", Series B, Vol. 32, s. 283-301.
  • Andersen E.B. (1972), The Numerical Solution of a Set of Conditional Estimation Equations, "The Journal of the Royal Statistical Society", Series B, Vol. 34, s. 42-54.
  • Andersen E.B. (1973), Conditional Inference in Multiple Choice Questionnaires, "British Journal of Methematical and Statistical Psychology", Vol. 26, s. 31-44.
  • Andrich D.A. (1978a), A Binomial Latent Trait Model for the Study of Likert-Style Attitude Questionnaires, "British Journal of Mathematical and Statistical Psychology", Vol. 31, s. 84-98.
  • Andrich D.A. (1978b), A Rating Formulation for Ordered Response Categories, "Psychometrika", Vol. 43, s. 561-573.
  • Ansley T.N., Forsyth R.A. (1985), An Examination of the Characteristics of Unidimensional IRT Parameter Estimates Derived from Two-Dimensional Data, "Applied Psychological Measurement", Vol. 9(1), s. 37-48.
  • APA [American Psychological Association] (1985), Standardy dla testów stosowanych w psychologii i pedagogice, Polskie Towarzystwo Psychologiczne, Laboratorium Technik Diagnostrycznych, Warszawa.
  • de Ayala R.J. (2009), The Theory and Practice of Item Response Theory, Guilford Press.
  • Babcock B. (2011), Estimating a Noncompensatory IRT Model Using Metropolis Within Gibbs Sampling, "Applied Psychological Measurement", Vol. 35, s. 317-329.
  • Baker F.B. (1964), An Intersection of Test Score Interpretation and Item Analysis, "Journal of Educationan Measurement", Vol. 1, s. 23-28.
  • Baker F.B. (1985), The Basics of Item Response Theory, "Journal of Educational Measurement", Vol. 23(3), s. 267-270.
  • Baker F.B. (2001), The Basics of Item Response Theory (2nd ed.), ERIC Clearinghouse on Assessment and Evaluation, College Park, MD:
  • Baker F.B., Kim S.H. (2004), Item Response Theory: Parameter Estimation Techniques, 2nd Edition, CRC Press, Boca Raton.
  • Bartholomew D.J. (1987), Latent Variable Models and Factor Analysis, Griffin: London and Oxford University Press, New York.
  • Bartolucci F., Farcomeni A., Pennoni F. (2013), Latent Markov Models for Longitudinal Data, CRC Press, Taylor & Francis Group.
  • Barton M.A., Lord F.M. (1981), An Upper Asymptote for the Three-Parameter Logistic Item-Response Model. Research Bulletin, Educational Testing Service, Princeton (NJ), s. 81-20.
  • Basilevsky A. (1994), Statistical Factor Analysis and Related Methods, Wiley, New York.
  • Bayes T. (1763), An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, "Philosophical Transactions of the Royal Society of London", Vol. 53, s. 370-418.
  • Bąk A. (2006), Modele ze zmiennymi ukrytymi w segmentacji rynku [w:] K. Jajuga, M. Walesiak (red.), Klasyfikacja i analiza danych - teoria i zastosowania, Taksonomia 15, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, Wydawnictwo Uniwersytetu Ekonomicznego, Wrocław.
  • Bąk A. (2007), Application of Latent Variable Models to Consumer Preference Analysis, "Acta Universitatis Lodziensis. Folia Oeconomica", Vol. 206, s. 321-331.
  • Bąk A. (2011), Modele klas ukrytych dla danych jakościowych [w:] E. Gantar, M. Walesiak (red.), Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, C.H. Beck, Warszawa, s. 204-222.
  • Bielecka A. (2011), Statystyka dla menedżerów. Teoria i praktyka, Oficyna a Wolters Kluwer Business, Warszawa.
  • Binet A., Simon T. (1913), A Method of Measuring the Development of the Intelligence of Young Children, Chicago Med. Book Co., Chicago, Illinois.
  • Birnbaum A. (1957), Efficient Design and Use of Tests of a Mental Ability for Various Decision Making Problems, Series Rep. No. 58-16, Project No. 7755-23, USAF School of Aviation Medicine, Randolph (TX).
  • Birnbaum A. (1958), On the estimation of mental ability, Series Rep. No. 15, Project No. 7755-23, USAF School of Aviation Medicine, Randolph (TX).
  • Birnbaum A. (1968), Some Latent Trait Models [w:] F.M. Lord, M.R. Novick (eds.), Statistical Theories of Mental Test Scores, Addison-Wesley, Reading, MA, s. 397-479.
  • Bock R.D. (1972), Estimating Item Parameters and Latent Ability When Responses are Scored in Two or More Nominal Categories, "Psychometrika", Vol. 37, s. 29-51.
  • Bock R.D. (1997), A Brief History of Item Response Theory, "Educational Measurement: Issues and Practice", Vol. 16(4), s. 21-33.
  • Bock R.D., Aitkin M. (1981), Marginal Maximum Likelihood Estimation of Item Pa-rameters: Applications of an EM Algorithm, "Psychometrika", Vol. 46, s. 443-459.
  • Bock R.D., Gibbons R.D., Muraki E. (1988), Fullinformation Item Factor Analysis, "Applied Psychological Measurement", Vol. 12, s. 261-280.
  • Bock R.D., Lieberman M. (1970), Fitting a Response Model for n Dichotomously Scored Items, "Psychometrika", Vol. 35(2), s. 179-197.
  • Boeck de P., Willson M. (2004), Explanatory Item Response Modells, A Generalized Linear and Nonlinear Approach, Springer.
  • Bolt D.M., Lall V.F. (2003), Estimation of Compensatory and Noncompensatory Multi-dimensional Item Response Models Using Markov Chain Monte Carlo, "Applied Psychological Measurement", Vol. 27, s. 395-414.
  • Borsboom D. (2005), Measuring the Mind: Conceptual Issues in Contemporary Psychometrics, Cambridge University Press, Cambridge.
  • Bozdogan H. (1987), Model Selection and Akaike's Information Criterion (AIC) The General Theory and Its Analytical Extensions, "Psychometrika", Vol. 52, s. 345-370.
  • Bryson B. (2016), Krótka historia prawie wszystkiego, Wydawnictwo Zysk i S-ka, Po-znań.
  • Brzezińska J. (2020), Modele odpowiedzi na pozycje testowe (IRT) w badaniach ekonomiczno-społecznych, Wydawnictwo Uniwersytetu Ekonomicznego, Katowice.
  • Burnham K.P., Anderson D.R. (1992), Databased Selection of an Appropriate Biological Model: The Key to Modern Data Analysis [w:] D.R. McCullough, R.H. Barrett (eds.), Wildlife 2001: Populations, Elsevier Scientific Publications, London, s. 16-30.
  • Cai L. (2010), High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm, "Psychometrika", Vol. 75, s. 33-57.
  • Cai L., Yang J., Hansen M. (2011), Generalized Full Information Bifactor Analysis, "Psychological Methods", Vol. 16, s. 221-248.
  • Cattell J. Mc. (1890), Mental Tests and Measurement, "Mind", Vol. os-XV, Iss. 59, s. 373-381.
  • Collins L., Lanza S.T. (2010), Latent Class and Latent Transition Analysis, Wiley, Hoboken (NJ).
  • Cooke D.J., Michie C. (1997), An Item Response Theory Analysis Of the Hare Psychopathy Checklist-Revised. "Psychological Assessment", Vol. 9, s. 3-14.
  • Coombs C.H., Dawes R.M., Tversky A. (1977), Wprowadzenie do psychologii ma-tematycznej, PWN, Warszawa.
  • Cronbach L.J., Rajaratnam N., Nanda H., Gleser G.C. (1972), The Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Profiles, Wiley, New York.
  • Cronbach L.J. (1990), Essentials of Psychological Tests, Harper Collins Publisher, New York.
  • Croon M. (1990), Latent Class Analysis with Ordered Latent Classes [w:] R. Langeheine, J. Rost (eds.), Latent Trait and Latent Class Models, Plenum, New York, s. 173-205.
  • Croon M. (1991), Investigating Mokken Scalability of Dichotomous Items by Means of Ordinal Latent Class Analysis, "British Journal of Mathematical and Statistical Psychology", Vol. 44, s. 315-331.
  • Croon M. (1993), Ordinal Latent Class Analysis for Single-Peaked Items, "Kwantitatieve Methodes", Vol. 14, s. 128-142.
  • Chalmers R.P. (2012), Mirt: A Multidimensional Item Response Theory Package for the R Environment, "Journal of Statistical Software", Vol. 48(6), s. 1-29.
  • Chatfield C., Collins A.J. (1980), Introduction to Multivariate Analysis, Chapman and Hall, London.
  • Chen W.-H., Thissen D. (1997), Local Dependence Indexes for Item Pairs Using Item Response Theory, "Journal of Educational and Behavioral Statistics", Vol. 22(3), s. 265-289.
  • Choynowski M. (1970), Podstawy i zastosowania teorii rzetelności testów psychologicznych [w:] J. Kozielecki (red.), Problemy psychologii matematycznej, PWN, Warszawa, s. 65-118.
  • Choynowski M. (1971), Pomiar w psychologii [w:] J. Kozielecki (red.), Problemy psychologii matematycznej, PWN, Warszawa, s. 15-42.
  • Choynowski M. (1990), Testy psychologiczne w poradnictwie wychowawczo-zawodowym, COMP, Warszawa.
  • Christoffersson A. (1975), Factor Analysis of Dichotomized Variables, "Psychometrika", Vol. 40(1), s. 5-32.
  • Desjardins C.D., Bulut O. (2018), Handbook of Educational Measurement and Psychometrics Using R, CRC the R series, Chapman & Hall, CRC Press.
  • Dorans N.J., Kingston N.M. (1985), The Effects of Violations of Unidimensionality on the Estimation of Item and Ability Parameters and on Item Response Theory Equating of the GRE Verbal Scale, "Journal of Educational Measurement", Vol. 22(4), s. 249-262.
  • Drasgow F., Parsons C.K. (1983), Application of Unidimensional Item Response Theory Models to Multidimensional Data, "Applied Psychological Measurement", Vol. 7(2), s. 189-199.
  • Drasgow F., Levine M.V., Williams E.A. (1985), Appropriateness Measurement with Polychotomous Item Response Models and Standardized Indices, "British Journal of Mathematical and Statistical Psychology", Vol. 38, s. 67-86.
  • Ebbinghaus H. (1897), Uber eine neue Melhode zur Prufung geistiger Fahigkellen und Ihre Anwendung bei Schuiklndern, "Zeitschrift fur Angewandle Psychologie", Nr 13, s. 401-459.
  • Embretson S.E. (1984), A Multicompoent Latent Trait Model for Response Proces, "Psychometrika", Vol. 49, s. 175-186.
  • Embretson S.E., Reise S.P. (2000), Item Response Theory for Psychologists, Mahwah, Lawrence Erlbaum, NJ.
  • Flannery W.P., Reise S.P., Widaman K.F. (1995), An Item Response Theory Analysis of the GeneralaAnd Academic Scales of the Self-Description Questionnaire II, "Journal of Research in Personality", Vol. 29(2), s. 168-188.
  • Fraley R.C., Waller N.G., Brennan K.A. (2000), An Item Response Theory Analysis of Self-Report Measures of Adult Attachment, "Journal of Personality and Social Psychology", Vol. 78(2), s. 350-365.
  • Fronczyk K. (2009), Przegląd wybranych testów psychologicznych [w:] K. Fronczyk (red.), Psychometria - podstawowe zagadnienia, Wyższa Szkoła Finansów i Zarządzania, Warszawa.
  • Gamerman D., Lopes H.F. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2nd ed.), CRC Press.
  • Galton F. (1869), Hereditary Genius, Macmillan and Co., London.
  • Gibbons R.D., Hedeker D.R. (1992), Fullinformation Item Bifactor Analysis, "Psychometrika", Vol. 57, s. 423-436.
  • Gibbons R.D, Bock R.D., Hedeker D., Weiss D., Bhaumik D.K., Kupfer D., Frank E., Grochocinski V., Stover A. (2007), Full-Information Item Bifactor Analysis of Graded Response Data, "Applied Psychological Measurement", Vol. 31, s. 4-19.
  • Glas C.A.W. (1988), The Derivation of Some Tests for the Rasch Model from the Multinomial Distribution, "Psychometrika", Vol. 53, s. 525-546.
  • Glas C.A.W., Verhelst N.D. (1989), Extensions of the Partial Credit Model, "Psychometrika", Vol. 54, s. 635-659.
  • Glas C.A.W., Verhelst N.D. (1995), Testing the Rasch Model [w:] G.H. Fischer,
  • I.M. Molenaar (eds.), Rasch Models. Their Foundations, Recent Developments and Applications, Springer, New York, s. 69-96.
  • Goodman L.A. (2002), Latent Class Analysis: The Empirical Study of Latent Types, Latent Variables, and Latent Structures [w:] J.A. Hagenaars, A.L. McCutcheon (eds.), Applied Latent Class Analysis, Cambridge University Press, Cambridge, s. 3-55.
  • Green D.R., Yen W.M., Burket G.R. (1989), Experiences in the Application of Item Response Theory in Test Construction, "Applied Measurement in Education", Vol. 2(4), s. 297-312.
  • Gruijter D.N.M., Kamp L.J. van der (2005). Statistical Test Theory for Education and Psychology. Pobrano z: http://irt.com.ne.kr/data/test_theory.pdf
  • Guilford J.P. (1936), Psychometric Methods, McGraw-Hill, New York.
  • Guilford J.P. (1950), Fundamental Statistics in Psychology and Education, McGraw-Hill Book Co., New York.
  • Guilford J.P. (1954), Psychometric Methods, 2nd ed., McGraw-Hill, New York.
  • Guilford J.P. (1959), Personality, McGraw-Hill, New York.
  • Guilford J.P. (1967), The Nature of Human Intelligence, McGraw-Hill, New York.
  • Gulliksen H. (1950), Theory of Mental Tests, Wiley, Chapman & Hall, New York - London.
  • Gustafsson J.-E. (1980), Testing and Obtaining Fit of Data to the Rasch Model, "British Journal of Mathematical and Statistical Psychology", Vol. 33(2), s. 205-233.
  • Hagenaars J.A., McCutcheon A.L. (2002), Applied Latent Class Analysis, Cambridge University Press, Cambridge.
  • Hambleton R.K., Swaminathan H. (1985), Item Response Theory: Principles and Applications, Kluwer, Boston.
  • Hambleton R.K., Swaminathan H., Rogers H.J. (1991), Fundamentals of Item Response Theory, Newbury Park, Sage (CA).
  • Hand D.J. (1996), Statistics and the Theory of Measurement, "Journal of the Royal Statistical Society", Ser. A, (3), s. 445-492.
  • Harris D. (1989), Comparison of 1-, 2-, and 3-parameter IRT Models, "Educational Measurement: Issues and Practice", Vol. 8(1), s. 35-41.
  • Hattie J. (1985), Methodology Review: Assessing Unidimensionality of Items and Items, "Applied Psychogical Measurement", Vol. 9, s. 139-164.
  • Hills M. (1977), Book Review, "Applied Statistics", Vol. 26, s. 339-340.
  • Holzinger K.J., Harman H.H. (1941), Factor Analysis. A Synthesis of Factorial Methods, University of Chicago Press, Chicago.
  • Holzinger K.J., Swineford F. (1937), The Bi-Factor Method, "Psychometrika", Vol. 2(1), s. 41-54.
  • Hornowska E. (2001), Testy psychologiczne. Teoria i praktyka, Wydawnictwo Naukowe Scholar, Warszawa.
  • Horst P. (1965), Factor Analysis of Data Matrices, Holt, Rinehart and Winston, New York.
  • Hoyt C. (1941), Test Reliability Estimated By Analysis of Variance, "Psychometrika", Vol. 6, s. 153-160.
  • Huang H.Y. (2013), Measuring Latent Growth Under the Multilevel Higher-Order Item Response Theory Model, Paper presented at 2013 Annual Meeting of National Council on Measurement in Education, San Francisco, CA.
  • Hulin C.L., Drasgow F., Parsons C.K. (1983), Item Response Theory: Application to Psychological Measurement, Dow Jones-Irwin, Homewood, IL.
  • Iwasiewicz A., Paszek Z. (1997), Statystyka z elementami statystycznych metod sterowania jakością, Wydawnictwo Akademii Ekonomicznej, Kraków.
  • Jöreskog K.G. (1971), Simultaneous Factor Analysis in Several Populations, "Psychometrika", Vol. 36(4), s. 409-426.
  • Jöreskog K.G. (1990), New Developments in LISREL: Analysis of Ordinal Variables Using Polychoric Correlations and Weighted Least Squares, "Quality and Quantity", Vol. 24, s. 387-404.
  • Karabatsos G. (2003), Comparing the Aberrant Response Detection Performance of Thirty Six Person Fit Statistics, "Applied Measurement in Education", Vol. 16, s. 277-298.
  • Kelderman H., Rijkes C.P.M. (1994), Loglinear Multidimensional IRT Models for Polytomously Scored Items, "Psychometrika", Vol. 59, s. 149-176.
  • Kelley T.L. (1927), Interpretation of Educational Measurements, World Book Co.
  • Kendall M., Gibbons J.D. (1990), Rank Correlation Methods, Oxford University Press, New York.
  • Kendall M.G., Stuart A. (1961), The Advanced Theory of Statistics. Volume 2, Inference and Relationship, Charles Griffin, London.
  • Kirisci L., Hsu T.-C., Yu L. (2001), Robustness of Item Parameter Estimation Programs to Assumptions of Unidimensionality and Normality, "Applied Psychological Measurement", Vol. 25(2), s. 146-162.
  • Kolakowski D., Bock R.D.A. (1970), Fortran IV Program for Maximum Likelihood Item Analysis and Test Scoring: Normal Ogive Model, Education Statistical Laboratory Research Memo No. 12. The University of Chicago.
  • Komorowska H. (2004), Sprawdzanie umiejętności w nauce języka obcego. Kontrola - Ocena - Testowanie, Fraszka Edukacyjna, Warszawa.
  • Kose I.A., Demirtasli N.C. (2012), Comparison of Unidimensional and Multidimensional Models Based on Item Response Theory in Terms of Both Variables of Test Length and Sample Size, "Procedia - Social and Behavioral Sciences", Vol. 46, s. 135-140.
  • Kraepelin E. (1895), Der psychologische Versuch in der Psychiatrie, "Psychologische Arbeiten", Nr 1, s. 1-91.
  • Kuder G.F., Richardson M.W. (1937), The Theory of the Estimation of Test Reliability, "Psychometrika", Vol. 2, s. 151-160.
  • Lane S., Stone C. (2006), Performance Assessment [w:] R.L. Brennan (ed.), Educational Measurement, 4th ed.: American Council on Education and Praeger Publichers, Westport, CT, s. 387-431.
  • Langeheine R., Rost J. (1988), Latent Trait and Latent Class Models, Plenum, New York.
  • Lanza S.T., Bray B.C., Collins L.M. (2013), An Introduction to Latent Class and Latent Transition Analysis [w:] J.A. Schinka, W.F. Velicer, I.B. Weiner (eds.), Handbook of Psychology, 2nd ed., Vol. 2, Wiley, Hoboken (NJ), s. 691-716.
  • Lawley D.N. (1943), On Problems Connected with Item Selection and Test Construction, "Proceedings of the Royal Statistical Society of Edinburgh", Vol. 61, s. 273-287.
  • Lawley D.N. (1944), The Factorial Analysis of Multiple Item Tests, "Proceedings of the Royal Statistical Society of Edinburgh", Series A, Vol. 62, s. 74-82.
  • Lawley D.N., Maxwell A.E. (1963), Factor Analysis as a Statistical Method, London.
  • Lee Y., Nedler J.A. (2009), Likelihood Inference for Models with Unobservables: Anoth-er View, "Statistical Science", Vol. 24(3), s. 255-269.
  • Levine M.V., Drasgow F. (1982), Appropriateness Measurement: Review, Critique, and Validating Studies, "British Journal of Mathematical and Statistical Psychology", Vol. 35, s. 42-56.
  • Levine M.V., Rubin D.B. (1979), Measuring the Appropriateness of Multiple-Choice Test Scores, "Journal of Educational Statistics", Vol. 4(4), s. 269-290.
  • Levy R., Svetina Y.S. (2011), A Generalized Dimensionality Discrepancy Measure for Dimensionality Assessment in Multidimensional Item Response Theory, "British Journal of Mathematical and Statistical Psychology", Vol. 64(2), s. 208-232.
  • Lin T.H., Dayton C.M. (1997), Model Selection Information Criteria for Nonnested Latent Class Models, "Journal of Educational and Behavioral Statistics", Vol. 22(3), s. 249-264.
  • Lord F.M. (1952), A Theory of Test Scores, "Psychometric Monograph", No 7.
  • Lord F.M. (1975), Evaluation with Artificial Data of a Procedurefor Estimating Ability and Item Characteristic Curve Parameters (Research Bulletin 75-33). Educational Testing Service, 197, Princeton, NJ.
  • Lord F.M. (1980), Applications of Item Response Theory to Practical Testing Problems, Lawrence Erlbaum, Hillsdale (NJ).
  • Lord F.M., Novick M.R. (1968), Statistical Theories of Mental Test Scores, Addison-Wesley, Reading, MA.
  • Lumsden J. (1978), Tests Are Perfectly Reliable, "British Journal Mathematical and Statistical Psychology", Vol. 31(1), s. 19-26.
  • Magnusson D. (1981), Wprowadzenie do teorii testów, PWN, Warszawa.
  • Maris E. (1995), Psychometric Latent Response Models, "Psychometrika", Vol. 60(4), s. 523-547.
  • Masters G.N. (1982), A Rasch Model for Partial Credit Scoring, "Psychometrika", Vol. 47, s. 149-174.
  • Masters G.N. (1988), Partial Credit Models [w:] J.P. Keeves (ed.), Educational Research Methodology, Measurement and Evaluation, Pergamon Press, Oxford, s. 292-296.
  • Masters G.N., Wright B.D. (1984), The Essential Process in a Family of Measurement Models, "Psychometrika", Vol. 49, s. 529-544.
  • Maydeu-Olivares A., Montaño R. (2013), How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical
  • Data Analysis, "Psychometrika", Vol. 78, s. 116-133.
  • McCall W.A. (1922), How to Measure in Education, McMillan Company, New York.
  • McDonald R.P. (1967), Nonlinear Factor Analysis, "Psychometrika Monograph", No. 15, 32 (4, Pt. 2).
  • McKinley R.L., Mills C.N. (1985), A Comparison of Several Goodness-of-Fit Statistics, "Applied Psychological Measurement", Vol. 9, s. 49-57.
  • Mead R.J. (1976a), Analysis of Fit of Data to the Rasch Model Through Analysis of Residuals, Unpublished Ph.D. dissertation, University of Chicago, Chicago.
  • Mead R.J. (1976b), Assessing the Fit of Data to the Rasch Model, Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
  • Mellenbergh G.J. (1995). Conceptual Notes on Models for Discrete Polytomous Item Responses, "Applied Psychological Measurement", 19(1), s. 91-100.
  • Mislevy R.J., Levy R., Kroopnick M., Rutstein D. (2008), Evidentiary Foundations of Mixture Item Response Theory Models [w:] G.R. Hancock, K.M. Samuelsen (eds.), Advances in Latent Variable Mixture Models, Information Age Publishing, Charlotte, NC, s. 149-175.
  • Molenaar I.W. (1983), Some Improved Diagnostics for Failure of the Rasch Model, "Psychometrika", Vol. 48, s. 49-72.
  • Mroch A.A., Bolt D.M. (2006), A Simulation Comparison of Parametric and Nonparametric Dimensionality Detection Procedures, "Applied Measurement in Education", Vol. 19(1), s. 67-91.
  • Mulaki S.A. (1972), A Mathematical Investigation of Some Multidimensional Rasch Models for Psychological Tests, The annual meeting of the Psychometric Society, Princeton, NJ.
  • Muraki E. (1992), A Generalized Partial Credit Model: Application of an EM Algorithm, "Applied Psychological Measurement", Vol. 16, s. 159-176.
  • Muraki E., Carlson J.E. (1993), Full-Information Factor Analysis for Polytomous Item Responses, Paper presented at the annual meeting of the American Educational
  • Research Association, Atlanta, GA.
  • Muraki E., Bejar I.I. (1995), Full Information Factor Analysis of Polytomous Item Responses of NCARB Exams, Paper presented at the European meeting of the Psychometric Society, Leiden.
  • Muraki E., Carlson J.E. (1995), Full-information Factor Analysis for Polytomous Item Responses, "Applied Psychological Measurement", Vol. 19, s. 73-90.
  • Muthén B. (1978), Contributions to Factor Analysis of Dichotomous Variables, "Psychometrika", Vol. 43(4), s. 551-560.
  • Nunnally J.C. (1978), Psychometric Theory, 2nd ed., McGraw-Hill, New York.
  • Oaks D. (1999), Direct Calculation of the Information Matrix via the EM, "Journal of the Royal Statistical Society: Series B (Statistical Methodology)", Vol. 61, s. 479-482.
  • Orlando M., Thissen D. (2000), Likelihood-Based Item-Fit Indices for Dichotomous Item Response Theory Models, "Applied Psychological Measurement", Vol. 24(1), s. 50-64.
  • Orlando M., Thissen D. (2003), Further Investigation of the Performance of S-X²: An Item Fit Index for Use with Dichotomous Item Response Theory Models, "Applied Psychological Measurement", Vol. 27(4), s. 289-298.
  • Osterlind S.J. (1990), Establishing Criteria for Meritorious Test Items. "Educational Re-search Quarterly", Vol. 14(3), s. 26-30.
  • Ostini R., Nering M. (2005), Polytomous Item Response Theory Models, Sage Publications, Thousand Oaks.
  • Pawłowski T. (1969), Metodologiczne zagadnienia humanistyki, PWN, Warszawa.
  • Pociecha J. (1986), Statystyczne metody segmentacji rynku, "Zeszyty Naukowe AE w Krakowie. Seria specjalna: Monografie" nr 71.
  • Reckase M.D. (1995), Portfolio Assessment: A Theoretical Estimate of Score Reliability, "Educational Measurement: Issues and Practice", Vol. 14(1), s. 12-14, 31.
  • Reckase M.D., McKinley R.L. (1982), Latent Trait Theory in a Multidimensional Latent Space [w:] D.J. Weiss (ed.), Item Response Theory and Computerized Adaptive Testing Conference Proceedings, University of Minnesota, Department of Psychology, s. 27-20.
  • Raftery A.E. (1993), Bayesian Model Selection in Structural Equation Models [w:]
  • K.A. Bollen, J.S. Long (eds.), Testing Structural Equation Models, Newbury Park, Sage (CA), s. 163-180.
  • Raftery A.E. (1995), Bayesian Model Selection in Social Research, "Sociological Methodology", Vol. 25, s. 111-193.
  • Rasch G. (1960), Probabilistic Models for Some Intelligence and Attainment Tests, Danish Institute for Educational Research, The University of Chicago Press, Copenhagen, Chicago.
  • Rasch G. (1961), On General Laws and the Meaning of Measurement in Psychology, "Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability", Vol. 4, s. 321-333.
  • Rasch G. (1966), An Individualistic Approach to Item Analysis [w:] P.F. Lazarsfeld, N.W. Henry (eds.), Readings in Mathematical Social Science, Science Research Associates, Chicago, s. 89-108.
  • Rasch G. (1968), A Mathematical Theory of Objectivity and Its Consequences for Model Construction, Report from European Meeting on Statistics, Econometrics and Management Sciences, Amsterdam.
  • Rasch G. (1977), On Specific Objectivity: An Attempt at Formalizing the Request for Generality and Validity of Scientific Statements, "The Danish Yearbook of Philosophy", Vol. 14, s. 58-93.
  • Rasch G. (1980), Probabilistic Models for Some Intelligence and Attainment Tests, Danish Institute for Educational Research, MESA Press, Denmark, Chicago, IL.
  • Reckase M.D. (1972), Development and Application of a Multivariate Logistic Latent Trait Model, Unpublished doctoral dissertation, Syracuse University, Syracuse, NY.
  • Reckase M.D. (1979), Unifactor Latent Trait Models Applied to Multifactor Tests: Results and Implications, "Journal of Educational Statistics", Vol. 4(3), s. 207-230.
  • Reckase M.D. (1985), The Difficulty of Test Items Thet Measure More Than One Ability, Paper presented at the AERA Annual Meeting, Chicago.
  • Reckase M.D. (1997), The Past and Future of Multidimensional Item Response Theory, "Applied Psychological Measurement", Vol. 21(1), s. 25-36.
  • Reckase M.D. (2008), Multidimensional Item Response Theory, Springer, New York.
  • Reckase M.D. (2009), Multidimensional Item Response Theory (Statistics for Social and Behavioral Sciences), Springer, New York.
  • Reckase M.D., McKinley R.L. (1982), Some Latent Trait Theory in a Multidimensional Latent Space. Item Response Theory and Computerized Adaptive Testing Conference Proceedings, Wayzata, s. 27-30.
  • Reckase M.D., McKinley R.L. (1991), The Discriminating Power of Items That Measure More Than One Dimension, "Applied Psychological Measurement", Vol. 15(4), s. 361-373.
  • Reise S.P., Waller N.G. (1990), Applications of Response Pattern Aberrancy Analysis to Personality Assessment. Unpublished manuscript.
  • Reise S.P., Waller N.G. (2003), How Many IRT Parameters Does It Take to Model Psychopathology Items?, "Psychological Methods", Vol. 8(2), s. 164-184.
  • Reise S.P., Waller N.G. (2010), Measuring Psychopatology with Nonstandard Item Response Theory Models: Fitting the Four-Parameter Model to the Minnesota Multiphasic Personality Inventory [w:] S.E. Embretson (red.), Measuring Psychological Constructs: Advances in Model-Based Approaches, American Psychological Association, Washington, DC, s. 147-173.
  • Rijmen F. (2009), Three Multidimensional Models for Testlet-Based Tests: Formal Relations and an Empirical Comparison, ETS Research Report, RR-09-37.
  • Rupp A.A., Templin J.L., Henson R.A. (2010), Diagnostic Measurement Theory, Methods and Applications, The Guilford Press, New York.
  • Rybicka A., Jefmański B., Pełka M. (2012), Analiza klas ukrytych w badaniach satys-fakcji studentów, Taksonomia 19. Klasyfikacja i analiza danych - teoria i zastosowania, "Prace Naukowe Uniwersyteu Ekonomicznego we Wrocławiu", nr 242, s. 247-255.
  • Sagan A. (2003), Analiza rzetelności skal satysfakcji i lojalności, StatSoft Polska, s. 39-52.
  • Sagan A. (2005), Ocena ekwiwalencji skal pomiarowych w badaniach międzykulturowych, "Zeszyty Akademii Ekonomicznej w Krakowie", nr 659, s. 59-73.
  • Sagan A. (2009), Podejście modelowe w segmentacji rynku, "Zeszyty Naukowe Uniwer-sytetu Ekonomicznego w Krakowie", nr 800.
  • Sagan A. (2013), Zmienne ukryte w badaniach ekonomicznych, Wydawnictwo Uniwersytetu Ekonomicznego, Kraków.
  • Sagan A. (2014), Analiza inwariancji pomiaru w badaniach przekrojowych, "Problemy Zarządzania, Finansów i Marketingu", nr 33, s. 187-197.
  • Sagan A. (2017), Wielopoziomowe modele klas ukrytych w badaniach międzynarodo-wych, "Marketing i Rynek", nr 9 (CD), s. 331-341.
  • Samejima F. (1969), Estimation of Latent Ability Using a Response Pattern of Graded Scores, "Psychological Monograph Supplement", Vol. 34.
  • Samejima F. (1979), A New Family of Models for the Multiple-Choice Item (Research Report No. 79-4), University of Tennessee, Department of Psychology, Knoxville.
  • Sahu S.K. (2002), Bayesian Estimation and Model Choice in Item Response Models, "Journal of Statistical Computation and Simulation", Vol. 72, s. 217-232.
  • Sclove L. (1987), Application of Model-Selection Criteria to Some Problems in Multivariate Analysis, "Psychometrika", Vol. 52, s. 333-343.
  • Schilling S., Bock R.D. (2005), Highdimensional Maximum Marginal Likelihood Item Factor Analysis by Adaptive Quadrature, "Psychometrika", Vol. 70, s. 533-555.
  • Schumacker R.E. (2004a), Rasch Measurement: The Dichotomous Model [w:] E.V. Smith, R.M. Smith (eds.), Introduction to Rasch Measurement, JAM Press, Malpe Grove, s. 226-257.
  • Schumacker R.E. (2004b), Rasch Measurement Using Dichotomous Scoring, "Journal of Applied Measurement", Vol. 5(3), s. 328-249.
  • Schwarz G. (1978), Estimating the Dimension of a Model, "Annals of Statistics", Vol. 6, s. 461-464.
  • Seber G.A.F. (1984), Multivariable Observations, Wiley, New York.
  • Sheng Y. (2009), Bayesian IRT Models Incorporating General and Specific Abilities, "Behaviormetrika", Vol. 36, s. 27-48.
  • Sijtsma K., Junker B.W. (2006), Item Response Theory: Past Performance, Present Development, and Future Expectations, "Behaviometrika", Vol. 33(1), s. 75-102.
  • Spearman C. (1904a), General Intelligence, Objectively Determined and Measured, "American Journal of Psychology", Vol. 15, s. 201-293.
  • Spearman C. (1904b), The Proof and Measurement of Association Between Two Things, "American Journal of Psychology", Vol. 15(1), s. 72-101.
  • Spearman C. (1907), Demonstration of Formulae for True Measurement of Correlation, "The American Journal of Psychology", Vol. 18 (2), s. 161-169.
  • Spencer S.G. (2004), The Strength of Multidimensional Item Response Theory in Ex-ploring Construct Space That Is Multidimensional and Correlated, Ph. D. thesis., Doctoral Dissertation, Brigham Young University-Provo.
  • Spray J.A. (1990), One-Parameter Item Response Theory Models for Psychomotor Tests Involving Repeated, Independent Attempts, "Research Quarterly for Exercise and Sport", Vol. 61, s. 162-168.
  • Steczkowski J., Zeliaś A. (1981), Statystyczne metody analizy cech jakościowych, PWE, Warszawa.
  • Stern W. (1914), Psychologie der frühen Kindheit bis zum sechsten Lebensjahr (The Psychology of Early Childhood Up to the Sixth Year of Age, Quelle & Meyer, Leipzig.
  • Stevens S.S. (1951), Mathematics, Measurement and Psychophysics [w:] S.S. Stevens (ed.), Handbook of Experimental Psychology, Wiley, New York, s. 1-49.
  • Stevens S.S. (1959), Measurement, Psychophysics and Utility, C.W. Churchman, P. Ratoosh (eds.), Measurement; Definitions and Theories, Wiley, New York, s. 18-61.
  • Stigler S.M. (1986), The History of Statistics. The Measurement of Uncertainty Before 1900, Harvard University Press, Cambridge, MA.
  • Stone C.A. (2000), Monte Carlo Based Null Distribution for an Alternative Goodness-of-Fit Test Statistic in IRT Models, "Journal of Educational Measurement", Vol. 37, s. 58-75.
  • Stout W.F. (1987), A Nonparametric Approach for Assessin Latent Trait Unidimensionality, "Psychometrika", Vol. 52, s. 589-617.
  • Stout W.F. (1990), A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation, "Psychometrika", Vol. 55(2), s. 293-325.
  • Stout W.F., Froelich A.G., Gao F. (2001), Using Resampling to Produce an Improved DIMTEST Procedure [w:] A. Boomsma, M.A.J. van Duijn, T.A.B. Snijders (eds.), Essays on item response theory, Springer-Verlag, New York, s. 357-375.
  • Stout S.P., Waller N.G. (2009), Item Response Theory and Clinical Measurement. "Annual Review of Clinical Psychology", Vol. 5, s. 27-48.
  • Suárez-Falcón J.C., Glas C.A. (2003), Evaluation of Global Testing Procedures for Item Fit to the Rasch Model, "British Journal Mathematical and Statistical Psychology", Vol. 56, s. 127-143.
  • Svetina D. (2012), Assessing Dimensionality of Noncompensatory Multidimensional Item Response Theory with Complex Structures, "Educational and Psychological Measurement", Vol. XX(X), s. 1-27.
  • Swaminathan H., Gifford J.A. (1982), Bayesian Estimation in the Rasch Model, "Jour-nal of Educational Statistics", Vol. 7, s. 175-191.
  • Sympson J.B. (1977). A Model for Testing with Multidimensional Items [w:] D.J. Weiss (ed.), Proceedings of the 1977 Computerized Adaptive Testing Conference, University of Minnesota, s. 82-98.
  • Sympson J.B. (1978), A Model for Testing with Multidimensional Items, Paper presented at the 1977 computerized Adaptative Testing Conference, University of Minnesota, Department of Psychology, Mineapolis.
  • Szymkowiak M., Klimanek T. (2018), Analiza klas ukrytych w badaniu niepełnosprawności, "Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu", nr 507, s. 237-246.
  • Tate R. (2003), A Comparison of Selected Empirical Methods for Assessing the Structure of Responses to Test Items, "Applied Psychological Measurement", Vol. 27, s. 159-203.
  • Tatsuoka K.K. (1982), A Latent Trait Model for Interpreting Misconceptions in Procedural Domains [w:] D.J. Weiss (ed.), Proceedings of the 1982 Item Response Theory and Computerized Adaptive Testing Conference, Department of Psychology, Psychometric Methods Program, University of Minnesota, Minneapolis, s. 322-339.
  • Tatsuoka K.K. (1984), Caution Indices Based on Item Response Theory, "Psychometrika", Vol. 49, s. 95-110.
  • Tatsuoka K.K., Linn R.L. (1983), Indices for Detecting Unusuall Patterns: Links to Between Two General Approaches and Potential Applications, "Applied Psychological Measurement", Vol. 7(1), s. 81-96.
  • Tatsuoka K.K., Tatsuoka M.M. (1982), Detection of Aberrant Response Patterns and Their Effect on Dimensionality, "Journal of Educational Statistics", Vol. 7, s. 215-231.
  • Thissen D., Cai L., Bock R.D. (2010), The Nominal Categories Item Response Model [w:] M.L. Nering, R. Ostini (eds.), Handbook of Polytomous Item Response Theory Models, Routledge/Taylor & Francis Group, s. 43-75.
  • Thissen D., Wainer H., eds. (2001), Test Scoring, Routledge, New York.
  • Thomas M.L. (2011), The Value of Item Response Theory in Clinical Assessment: A Review, "Assessment", Vol. 18(3), s. 291-307.
  • Thorndike E.L. (1904), Theory of Mental and Social Measurements, The Science Press, New York.
  • Thurstone L.L. (1928), Attitudes Can be Measured, "American Journal of Sociology", Vol. 33, s. 529-554.
  • Thurstone L.L. (1947), Multiple-Factor Analysis. A Development and Expansion of the Vectors of Mind, University of Chicago Press, Chicago.
  • de la Torre J. (2008), Multidimensional Scoring of Abilities: The Ordered Polytomous Response Case, "Applied Psychological Measurement", Vol. 32, s. 355-370.
  • de la Torre J., Patz R.J. (2005), Making the Most of What We Have: A Practical Application of Multidimensional Item Response Theory in Test Scoring, "Journal of Educational and Behavioral Statistics", Vol. 30(3), s. 295-311.
  • Trabin T.E., Weiss D.J. (1979), The Person Response Curve: Fit of Individuals to Item Characteristic Curve Models (Research Report 79-7), Psychometric Methods Program, Department of Psychology, University of Minnesota, Minneapolis.
  • Traub R.E. (1983), A Priori Considerations in Choosing an Item Response Model [w:] R.K. Hambleton (ed.), Applications of Item Response Theory, Educational Research Institute of British Columbia, Vancouver, s. 57-70.
  • Tucker L.R. (1946), Maximum Validity of a Test with Equivalent Items, "Psychometrika", Vol. 11, s. 1-13.
  • Verhelst N.D., Verstralen H.H.F.M. (1997), Modeling Sums of Binary Responses by the Partial Credit Model (Measurement and Research Department Reports 97-9), Cito, Arnhem.
  • Vermunt J.K., Magidson J. (2000), Latent Gold: User's Manual, Statistical Innovations Inc., Boston (MA)
  • Vermunt J.K., Magidson J. (2002), Latent Class Cluster Analysis [w:] J.A. Hagenaars, A.L. McCutcheon (eds.), Applied Latent Class Analysis, Cambridge University Press, Cambridge, s. 89-106.
  • Vermunt J.K., Magidson J. (2005), Latent Gold 4.0. User's Guide, Statistical Innovations Inc., Belmont (MA)
  • Verhelst N.D., Verstralen H.H.F.M., Jansen M.G.H. (1997), A Logistic Model for Time-Limit Tests [w:] W.J. van der Linden, R.K. Hambleton (eds.), Handbook of Modern Item Response Theory, Springer, s. 169-185.
  • Walenta K. (1971), Podstawowe pojęcia teorii pomiaru [w:] J. Kozielecki (red.), Problemy psychologii matematycznej, PWN, Warszawa.
  • Walesiak M. (1990), Syntetyczne badania porównawcze w świetle teorii pomiaru, "Przegląd Statystyczny", z. 1-2, s. 37-46.
  • Walesiak M. (1991), O stosowalności miar korelacji w analizie wyników pomiaru porządkowego, "Prace Naukowe AE we Wrocławiu", nr 600, s. 13-19.
  • Walesiak M. (1995), The Analysis of Factors Influencing the Choice of the Methods in the Statistical Analysis of Marketing Data, "Statistics in Transition", Vol. 2, No. 2, s. 185-194.
  • Walesiak M., Bąk A. (2000), Conjoint analysis w badaniach marketingowych, Wydawnictwo AE, Wrocław.
  • Way W.D., Ansley T.N., Forsyth R.A. (1988), The Comparative Effects of Compensatory and Noncompensatory Two-Dimensional Data on Unidimensional IRT Estimates, "Applied Psychological Measurement", Vol. 12(3), s. 239-252.
  • Whitely S.E. (1980), Measuring Aptitude Processes with Multicomponent Latent Trait Model (Technical Report No. NIE-80-5), University of Kansas, Lawrence, KS.
  • Wiśniewski J.W. (1986), Korelacja i regresja w badaniach zjawisk jakościowych na tle teorii pomiaru, "Przegląd Statystyczny", z. 3, s. 239-248.
  • van den Wollenberg A.L. (1982), Two New Test Statistics for the Rasch Model, "Psychometrika", Vol. 47, s. 123-140.
  • Wood R., Wilson D.T., Gibbons R.D., Schilling S.G., Muraki E., Bock R.D. (2003), TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis [Computer software], Scientific Software International, Lincolnwood, IL.
  • Wright B.D. (1977), Solving Measurement Problems with the Rasch Model, "Journal of Educational Measurement", Vol. 14, s. 97-116.
  • Wright B.D. (1997), A History of Social Science Measurement, "Educational Measure-ment: Issues and Practice", Vol. 16(4), s. 33-45.
  • Wright B.D., Masters G.N. (1982), Rating Scale Analysis, MESA Press, Chicago.
  • Wright B.D., Mead R., Draba R. (1976), Detecting and Correcting Item Bias with a Logistic Response Model. Research Memorandum No. 22, Statistical Laboratory, Department of Education, Chicago
  • Wright B.D., Mead R.J. (1977), BICAL: Calibratingand Scales with the Rasch model, Research Memorandum No. 23,,Statistical Laboratory, Department of Education, University of Chicago, Chicago.
  • Wright B.D., Panchapakesan N.A. (1969), A Procedure for Sample Free Item Analysis, "Educational and Psychological Measurement", Vol. 29, s. 23-48.
  • Wright B.D., Stone M.H. (1979), Best Test Design: Rasch Measurement, Mesa Press, Chicago (IL).
  • Wu M., Adams R., Wilson M., Haldane S. (2007), ACER ConQuest Version 2.0: Generalised Item Response Modelling Software [Computer Software and Manual], ACER Press, Camberwell, Victoria, Australia.
  • Yang S. (2007), A Comparison of Unidimensional and Multidimensional RASCH Models Using Parameter Estimates and Fit Indices When Assumption of Unidimensionality Is Violated, Ph. D. thesis, doctoral dissertation, The Ohio State University.
  • Yao L., Schwarz R. (2006), A Multidimensional Partial Credit Model with Associated Item and Test Statiscs: An Application to Mixed-Format Tests, "Applied Psycho-logical Measurement", Vol. 30, s. 469-492.
  • Yaremko R., Harari H., Harrison R., Lynn E. (1982), Reference Handbook of Research and Statistical Methods in Psychology: For Students and Professionals, Harper & Row Publishers, New York.
  • Yen W.M. (1981), Using Simulation Results to Choose a Latent Trait Model, "Applied Psychological Measurement", Vol. 5, s. 245-262.
  • Yen W.M. (1984), Increasing Item Complexity: A Possible Cause of Scale Shrinkage for Unidimensional Item Response Theory, Paper presented at the meeting of the Psychometric Society, Santa Barbara, CA.
  • Yoakum C.S., Yerkes R.M., eds. (1920), Army Mental Tests, Henry Holt and Company, New York.
  • Zhang J. (2007), Conditional Covarianse Theory and DETECT for Polytomous Items, "Psychometrika", Vol. 72(1), s. 69-91.
  • Zhang J., Stout W. (1999), The Theoretical DETECT Index of Dimensionality and Its Appliction to Approximate Simple Structure, "Psychometrika", Vol. 64(2), s. 213-249.
  • Zucchini W., MacDonald I.L. (2009), Hidden Markov Models for Time Series: An Introduction Using R, Monograph on Statistics and Applied Probability, Chapman & Hall, CRC, Boca Raton (FL).
  • [www 1] http://factsanddetails.com/china/cat2/4sub9/entry-5385.html (dostęp: kwiecień 2021).
  • [www 2] https://artuk.org/discover/artworks/formerly-called-nevil-maskelyne-17321811-
  • astronomer-royal-173450 (dostęp: kwiecień 2021).
  • [www 3] www.brusselsremebers.irisnet.be (dostęp: kwiecień 2021).
  • [www 4] https://www.researchgate.net/figure/Anthropometric-record-card-of-Francis-Galton-including-profile-andfull-face-photos_fig63_325272698 (dostęp: kwiecień 2021).
  • [www 5] https://fineartamerica.com/featured/james-cattell-american-philosophical-society.html (dostęp: kwiecień 2021).
  • [www 6] https://www.goodreads.com/book/show/37586839-general-intelligence-objectively-determined-and-measured (dostęp: kwiecień 2021).
  • [www 7] https://encyklopedia.pwn.pl/haslo/Binet-Alfred;3877749.html (dostęp: kwiecień 2021).
  • [www 8] https://intelligenceccsw5.weebly.com/spearmans-g-factor.html (dostęp: kwiecień 2021).
  • [www 9] https://alchetron.com/Louis-Leon-Thurstone (dostęp: kwiecień 2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171641495

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.