PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | 11(1) | 1--16
Tytuł artykułu

Sustaining Resources for Homo Martis: the Potential Application of Synthetic Biology for the Settlement of Mars

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recent success of the Mars 2020 project and the high quality images relayed back to Earth have provided further impetus and expectations for human missions to Mars. To support space agency and private enterprise plans to establish a sustainable colony on Mars in the 2030s, synthetic biology may play a vital role to enable astronaut self-sufficiency. In this review, we describe some aspects of where synthetic biology may inform and guide in situ resource utilisation strategies. We address the nature of Martian regolith and describe methods by which it may be rendered fit for purpose to support growth and yield of bioengineered crops. Lastly, we illustrate some examples of innate human adaptation which may confer characteristics desirable in the selection of colonists and with a future looking lens, offer potential targets for human enhancement. (original abstract)
Czasopismo
Rocznik
Tom
Strony
1--16
Opis fizyczny
Twórcy
autor
  • Rosliston Astronomy Group, England, United Kingdom
  • Sherwood Observatory, England, United Kingdom
Bibliografia
  • Duffy, D. Elon Musk says SpaceX will get humans to Mars in 2026. https://www.businessinsider.co.za/elon-musk-spacex-starship-humans-mars-mission-2026-experts-question-2021-2. Accessed 11th May 2021.
  • Mars One Roadmap. https://www.mars-one.com/mission/roadmap. Accessed 11th May 2021.
  • How Investing in the Moon Prepares NASA for First Human Mission to Mars. https://www.nasa.gov/sites/default/files/atoms/files/moon-investments-prepare-us-for-mars.pdf. Accessed 1th May 2021.
  • Braddock, M, Wilhelm, CP, Romain, A, Bale L, Szocik, K. Application of socio-technical systems models to Martian colonisation and society build. Theoret. Issues Ergonomics Sci. 21, 2019, pp.131-152.
  • Vincente, K.J. Cognitive work analysis: towards safe, productive and health computer-based work. CRC press, 1999.
  • Naikar, N. Work domain analysis: concepts, guidelines and cases. CRC press, 2013.
  • Cooper, M., Douglas, D. & Perchonok, M. Developing the NASA food system for long-duration missions. J. Food Sci. 76, 2011, R40- R48.
  • Verseux, C., Lima, I.G.P., Baque, M., Rothschild, M. Synthetic Biology for Space Exploration: Promises and Societal Implications. In: Ambivalences of Creating Life. Societal and Philosophical Dimensions of Synthetic Biology. Hagen, K., Engelhard, M., Toepfer (eds.), Springer-Verlag publishers, 2016, pp. 73-100.
  • Ishimatsu, T., Grogan, P., de Weck, O. Interplanetary Trajectory Analysis and Logistical Considerations of Human Mars Exploration J. Cosmol. 12, 2010, pp, 3588-3600.
  • Ogawa, N., Haruki, M., Kondoh, Y. et al. Orbit plan and mission design for Mars EDL and surface exploration technologies demonstrator. Trans. JSASS Aerospace Tech. 14, 2016, pp. 9-15.
  • Hohmann, W. The Attainability of Heavenly Bodies. In: NASA Technical Translation, F-44, 1960.
  • Jones, H.W. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems, 2018, CES-2018-81, pp. 1-10.
  • Roberts, T.G. Space Launch to Low Earth Orbit: How Much Does It Cost? Civil and Commercial Space Space Security, 2020 https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/, accessed 28th April 2021.
  • World population projections. https://www.worldometers.info/world-population/world-population-projections/. Accessed 11th May 2021.
  • Eydelman, A. Temperature on the surface of Mars. The Physics Factbook. Elert, G. (ed.), 2001.
  • Mars facts, NASA (2013). https://web.archive.org/web/20130607140708/http:/quest.nasa.gov/aero/planetary/mars.html. Accessed April 28th 2021.
  • Mars fact sheet, NASA (2018). https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html. Accessed May 10th 2021.
  • Matthiä, D. et al. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. Life Sci. Space Res., 14, 2017, pp. 18-28.
  • Bloshenko, A.D., Robinson, J.M., Colon, R.A., Anchordoqui, L.A. Health threat from cosmic radiation during manned missions to Mars. arXiv:2012.09604v1.
  • Paris, J., Davis, E.T., Tognetti, L., Zahniser, C. Prospective Lava Tubes at Hellas Planitia, J. Wash. Acad. Sci. 2004.13156, 2019.
  • Voroney, R.P., Heck, R. J. The soil habitat. In: Soil microbiology, ecology and biochemistry (3rd ed.). Eldor, P.A. (ed.). Amsterdam, the Netherlands: Elsevier publishers. 2007, pp. 25-49.
  • Needelman, B. A. What Are Soils? Nature Education Knowledge 4, 2013, 2.
  • Kalev, S.D., Toor, G.S. Chapter 3.9 - The Composition of soils and sediments. In: Green Chemistry. Torok, B., Dransfield, T. (eds.) Elsevier publishers, 2018, pp. 339-357.
  • McSween, H.Y., Taylor, G.J., Wyatt, M.B. Elemental Composition of the Martian Crust. Science, 324, 2009, pp. 736-739.
  • Cousin, A., Meslin, P.Y., Wiens, R.C. et al. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 249, 2015, pp.22-42.
  • Ming, D. W., Morris, R. V. Dust in the Atmosphere of Mars and Its Impact on Human Exploration. In: Proceedings of the LPI, contribution No. 1966, 2017, id.6027.
  • Bohle, S., Montaño, H.S.P., Bille, M., Turnbull, D. Evolution of soil on Mars. Astron. & Geophys., 57, 2016, pp. 2.18-2.23.
  • Ramkissoon, N.K., Pearson, V.K., Schwenzer, S.P. et al. New simulants for Martian regolith: Controlling iron variability. Planetary Space. Sci., 179, 2019, 104722.
  • Braddock, M. Mission to Mars: Countdown to Building a Brave New World - Laying the Foundations. In: Yearbook of Astronomy. Jones, B. (ed.), White Owl publishers 2022, In press.
  • Hecht, M. H., Kounaves, S.P., Quinn, R.C. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site. Science 325, 2009, pp. 64-67.
  • Davila, A.F., Willson, D., Coates, J.D. & McKay, C.P. Perchlorate on Mars: a chemical hazard and a resource for humans. Int. J. Astrobiol. 12, 2013, pp 321-325.
  • Glavin, D., Grotzinger, J.P. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 2013, pp.1955-1973.
  • Niziński P, Błażewicz A, Kończyk J, Michalski R. Perchlorate - properties, toxicity and human health effects: an updated review. Rev. Environ. Health. 2020, doi: 10.1515/reveh-2020-0006.
  • He, H., Gao, H. Chen, G. et al. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environ. Sci. Poll. Res. Int. 20, 2013, pp. 7301-7308.
  • Wadsworth, J., Cockell, C.S. Perchlorates on Mars enhance the bacteriocidal effects of UV light. Sci. Rep. 7, 2017, 4662.
  • Carrier, B.L. Kounaves, S.P. The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 2015, pp. 3739-3745.
  • Race, M.S., Moses, J., McKay, C., Venkateswaran, K.J. Synthetic biology in space: considering the broad societal and ethical implications. Int. J. Astrobiol. 11, 2012, pp. 133-139.
  • Menezes, A.A., Montague, M.G., Cumbers, J., Hogan, J.A., Arkin, A.P. Grand challenges in space synthetic biology. J. R. Soc. Interface 12, 2015, 20150803.
  • Llorente, B., Williams, T.C., Goold, H.D. The multiplanetary future of plant synthetic biology. Genes, 9, 2018, 348.
  • McNulty, M.J., Xiong, Y., Yates, K. et al. Molecular pharming to support human life on the moon, Mars, and beyond. Preprints 2020, 2020090086.
  • Nangle, S.N., Wolfson, M.Y., Hartsough, L. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 2020, pp. 401-407.
  • Patel, Z.S., Brunstetter, T.J., Tarver, W.J. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity 6, 2020, 33.
  • Duncan, P.B., Morrison, R.D., Vavricka, E. Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environ. Forensics. 6, 2005, pp.205-215.
  • Cole-Dai, J., Peterson, K.M., Kennedy, J.A., Cox, T.S., Ferris, D.G. Evidence of influence of human activities and volcanic eruptions on environmental perchlorate from a 300-year Greenland ice core record. Environmental Science & Technology, 52, 2018, pp. 8373-8380.
  • Acevedo-Barrios, R., Sabater-Marco, C., Olivero-Verbel, J. Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25, 2018, pp. 13697-13708.
  • Maffini, M.V., Trasande, L., Neltner, T.G. Perchlorate and diet: human exposures, risks, and mitigation strategies. Current Environmental Health Reports, 3, 2016 pp. 107-117.
  • Smith, P.N. In: The Ecotoxicology of Perchlorate in the Environment BT-Perchlorate: Environmental Occurrence, Interactions and Treatment, Gu, B and Coates, J.D. (eds.), Boston, USA, Springer publishers 2006.
  • Knight, B.A., Shields, B.M., He, X. et al. Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Res., 11, 2018, 9.
  • Steinmaus, C., Pearl, M., Kharrazi, M. et al. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in southern California. Environ. Health Perspect., 124, 2016, pp. 861-867.
  • Srinivasan, A., Viraraghavan, T. Perchlorate: health effects and technologies for its removal from water resources. Int. J. Environ. Res. Public Health 6, 2009, pp 1418-1442.
  • Orris, G.J., Harvey, G.J., Tsui, D.T., Eldrige, J.E. Preliminary analyses for perchlorate in selected natural materials and their derivative products. USGS, 2003. https://www.fws.gov/uploadedFiles/AR%200025%202003%20Preliminary%20analyses%20for%20perchlorate%20in%20selected%20natural%20materials%20and%20their%20derivative%20products.pdf accessed on 10th May 2021.
  • Wang, O., Coates, J.D. Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms. 5, 2017, pp, 76.
  • Arkin, A. A Synthetic Biology Architecture to Detoxify and Enrich Mars Soil for Agriculture, 2017. https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Mars_Soil_Agriculture/. Accessed on April 27th 2021.
  • Venturelli, O S; Egbert, R G; Arkin, A P. Towards engineering biological systems in a broader context. J. Mol. Biol., 428, 2016, pp. 928-944.
  • Enrichment of Martian regolith to useful agricultural soil. https://cubes.space/divisions/mmfd. Accessed May 11th 2021.
  • Orosei, R., Lauro, S.E., Pettinelli, E. et al. Radar evidence for subglacial liquid water on Mars. Science, 361, 2018, pp. 490-493.
  • Nazari-Sharavian, M., Aghababaei, M., Karakouzian, M., Karami, M. Water on Mars - a literature review. Galaxies 8, 2020, 40.
  • Joseph, R., Gibson, C.H., Schild, R. Water, ice, mud in the Gale crater: implications for life on Mars. J. Cosmol. 29, 2020, pp. 1-33.
  • Scheller, E.L., Ehlmann, B.L., Hu, R., Adams, D.J., Yung, Y.L. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science, 372, 2021, pp. 56-62.
  • Rosa, L. et al. Global agricultural economic water scarcity. Science Advances 6, 2020, eaaz6031.
  • Mekonnen, M.M., Gerbens-Leenes, W. The water footprint of global food production. Water 12, 2020, 2696.
  • Yang, X., Cushman, J.C., Borland, A.M., Liu, Q. Editorial: Systems Biology and Synthetic Biology in Relation to Drought Tolerance or Avoidance in Plants. Front. Plant Sci. 11, 2020, 394.
  • Głowacka, K., Kromdijk, J., Kucera, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 2018, 868.
  • Park, S.-Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 520, 2015, pp. 545-548.
  • Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.N. Engineering cold stress tolerance in crop plants. Curr. Genomics 12, 2011, pp. 30-43.
  • Wisniewski, M., Nassuth, A., Arora, R. (2018). Cold hardiness in trees: a mini-review. Front. Plant Sci. 9, 2018, 1394.
  • Joshi R., Singh, B., Chinnusamy, V. Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges. In: Cold Tolerance in Plants, Wani S., Herath V. (eds). Springer, Cham. 2020, pp. 179-195.
  • Singh, A,, Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants. 14, 2008, pp. 155-166.
  • Jia, Y., Ding, Y., Shi Y. et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 212, 2016, pp. 345-353.
  • Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J. K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 171, 2016, pp. 2744-2759.
  • Kumar SR, Kiruba R, Balamurugan S, Cardoso HG, Birgit A-S, et al. Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiologiae Plantarum, 36, 2014, pp. 21-27.
  • Zaidi, S.SeA., Mahas, A., Vanderschuren, H. et al. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 21, 2020, 289.
  • Bouis, H. E., Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec.12, 2017, pp.49-58.
  • Bhullar, N.K. Gruissem, W. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol. Adv. 31, 2013, pp. 50-57.
  • Ye, X., Al-Babili, S., Klöti, A. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 2000, pp. 303-305.
  • Paine, J.A., Shipton, C.A., Chaggar, S. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 2005, pp. 482-487.
  • Datta, S.K., Datta, K., Parkhi, V. et al. Golden rice: introgression, breeding, and field evaluation. Euphytica, 154, 2007, pp. 271-278.
  • Tang, G., Qin, J., Dolnikowski, G.G., Russell, R.M., Grusak, M.A. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 89, 2009, pp. 1776-1783.
  • New Plant Variety Consultation: FDA (2018). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=NewPlantVarietyConsultations.Accessed December 12th 2020.
  • Provitamin A Biofortified Rice Event GR2E (Golden Rice): Health Canada (2018).https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/golden-rice-gr2e.html. Accessed 28th April 2021.
  • Sautter, C., Poletti, S., Zhang, P., Gruissem, W. Biofortification of essential nutritional compounds and trace elements in rice and cassava. Proc. Nutr. Soc. 65, 2006, pp. 153-159.
  • Diretto G, Al-Babili S, Tavazza R. et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2, 2007, e350.
  • Díaz de la Garza, R.I., Gregory III, G.F., Hanson, A.D. Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA, 104, 2007, pp. 4218-4222.
  • Narayanan, N., Beyene, G., Chauhan R.,D. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37, 2019, pp. 144-151.
  • Connor, M.R., Atsumi, S. Synthetic biology guide biofuel production. BioMed Res. Int. 2010, 2010, 541698
  • Khatib, S.E., Yassine, N.A. Advances in Synthetic Biology and Metabolic Engineering in the Production of Biofuel. Int. J. Curr. Microbiol. App. Sci., 8, 2019, pp. 1762-1772.
  • Mortimer JC. Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine. 244, 2019, pp,323-331.
  • Verseux, C. et al. Sustainable life support on Mars - the potential roles of cyanobacteria. Int. J. Astrobiol. 15, 2016, pp. 65-92.
  • Getting there and back. In: Human missions to Mars. Springer Praxis Books. Springer, Berlin, Heidelberg, 2008.
  • Merino, N., Aronson, H.S., Bojanova, D.P. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol., 10, 2019, 780.
  • Schröder, C., Burkhardt, C. & Antranikian, G. What we learn from extremophiles. ChemTexts 2020, 6, 8.
  • Ginsburg, I., Lingam, M., Loeb, A. Galactic panspermia. Astrophys. J. Lett., 868, 2018, L12.
  • Wassmann, M., Moeller, R., Rabbow, E. et al. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated Martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology, 12, 2012, pp. 498-507.
  • Santomartino, R., Waajen, A.C., de Wit, W. No effect of microgravity and simulated Mars gravity on final bacterial cell concentrations on the International Space Station: applications to space bioproduction. Front. Microbiol. 11, 2020, 579156.
  • Braddock, M. Limitations for colonisation and civilisation build and the potential for human enhancements. In: Human Enhancements for Space Missions. Space and Society. Szocik K. (eds) Springer, Cham. publishers 2020, pp. 71-93.
  • Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr. Opin. Genet. Dev. 53, 2018, pp. 77-82.
  • Burtscher, M., Gatterer, H., Burtscher, J., Mairbäurl, H. Extreme terrestrial environments: life in thermal stress and hypoxia. A narrative review. Front. Physiol. 9, 2018, 572.
  • Clemente F.J. et al. A selective sweep on a deleterious mutation in CPT1A in Arctic populations. Am. J. Hum. Genet. 95, 2014, pp.584-589.
  • Fumagalli, M. et al.: Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 349, 2015, pp.1343-1347.
  • Key F.M. et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 14, 2018, e1007298.
  • Bigham A.W. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum. Genomics 4, 2009, pp.79-90.
  • Simonson, T.S, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010 329, 2010, pp. 72-75.
  • Simonson, T.S., McClain, D.A., Jorde, L.B., Prchal, J.T. Genetic determinants of Tibetan high-altitude adaptation. Hum. Genet. 2012,131, pp.527-533.
  • Hanaoka M. et al. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS One. 7, 2012, 50566.
  • MacInnis MJ, Wang P, Koehle MS, Rupert JL. The genetics of altitude tolerance: the evidence for inherited susceptibility to acute mountain sickness. J. Occup. Environ. Med. 53, 2011, pp.159-168.
  • Peng Y, et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 2011, pp, 1075-1081.
  • van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt. Med. Biol. 2011 12, 2011, pp.157-167.
  • Zhou D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 2013, pp. 452-62.
  • Valverde G. et al. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One 10, 2015, 0125444.
  • Angelin-Duclos, C. et al. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 132, 2005, pp. 925-934.
  • Ilardo, M.A. et al. Physiological and genetic adaptations to diving in sea nomads. Cell, 173, 2018, pp. 569-580.
  • Hickey, L.T., Hafeez, A.N., Robinson, H. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 2019, pp. 744-754.
  • Voigt, C.A. Synthetic biology 2020-2030: six commercially-available products that are changing the world. Nat Commun. 11, 2020, article 6379.
  • Brooks, S.M., Alper, H.S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 2021, 12, 1390.
  • Reynolds, J.L. Engineering biological diversity: the international governance of synthetic biology, gene drives and de-extinction for conservation. Curr. Op. Environ. Sust. 49, 2021, pp. 1-6.
  • Del Valle, I., Fulk, E.M., Kalvapalle, P. et al. Translating new synthetic biology advances for biosensing into the Earth and environmental sciences. Front. Microbiol. 11, 2021, article 618373.
  • Douglas, T., Savulescu, J. Synthetic biology and the ethics of knowledge. J. Med. Ethics. 36, 2010, pp. 687-694.
  • Wang, F., Zhang, W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety & Biosecurity 1, 2019, pp. 22-30.
  • Conde-Pueyo N, Vidiella B, Sardanyés J, et al. Synthetic biology for terraformation lessons from Mars, Earth, and the microbiome. Life 10, 2020:14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171642373

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.