PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 14 | nr 1 | 81--108
Tytuł artykułu

State-dependent Autoregressive Models with p Lags: Properties, Estimation and Forecasting

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider a class of nonlinear autoregressive models in which a specific type of dependence structure between the error term and the lagged values of the state variable is assumed. We show that there exists an equivalent representation given by a p-th order state-dependent autoregressive (SDAR(p)) model where the error term is independent of the last p lagged values of the state variable (y(t-1), ..., y(t-p)) and the autoregressive coefficients are specific functions of them. We discuss a quasi-maximum likelihood estimator of the model parameters and we prove its consistency and asymptotic normality. To test the forecasting ability of the SDAR(p) model, we propose an empirical application to the quarterly Japan GDP growth rate which is a time series characterized by a level-increment dependence. A comparative analyses is conducted taking into consideration some alternative and competitive models for nonlinear time series such as SETAR and AR-GARCH models. (original abstract)
Rocznik
Tom
14
Numer
Strony
81--108
Opis fizyczny
Twórcy
autor
  • Department of Economics and Statistics, University of Siena, Italy
  • Department of Statistical Sciences, University of Bologna, Italy
Bibliografia
  • [1] An H. Z., Huang F. C., (1996), The geometrical ergodicity of nonlinear autoregressive models, Statistica Sinica 6, 943-956.
  • [2] Bollerslev T., (1986), Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics 31(3), 307-327.
  • [3] Bollerlsev T., Chou R. Y., Kroner K. F., (1992), ARCH modelling in finance: a review of the theory and empirical evidence, Journal of Econometrics 52, 5-59.
  • [4] Brock W. A., Dechert W. D., Sheinkman J. A., (1987), A Test of Independence Based on the Correlation Dimension, SSRI no. 8702, Department of Economics, University of Wisconsin, Madison.
  • [5] Brock W. A., Dechert W. D., Sheinkman J. A., LeBaron B., (1996), A Test of Independence Based on the Correlation Dimension, Econometric Reviews 15, 197-235.
  • [6] Cai Z., Fan J., Yao Q., (2000), Functional-Coefficient Regressive Models for Nonlinear Time Series, Journal of the American Statistical Association 95(451), 941-956.
  • [7] Chan K. S., (1991), Percentage points of likelihood ratio tests for threshold autoregression, Journal of Royal Statistical Society B 53(3), 691-696.
  • [8] Chen R., Liu M. L., (2001), Functional coefficient autoregressive models: estimation and tests of hypotheses, Journal of Time Series Analysis 22(2), 151- 173.
  • [9] Chen R., Tsay R., (1993), Functional-coefficient autoregressive models, Journal of the American Statistical Association 88, 298-308.
  • [10] Cherubini U., Mulinacci S., Romagnoli S., (2011), A Copula-based Model of Speculative Price Dynamics in Discrete Time, Journal of Multivariate Analysis 102, 1047-1063.
  • [11] Cherubini U., Gobbi F., Mulinacci S., Romagnoli S., (2012), Dynamic copula methods in Finance, John Wiley & Sons.
  • [12] Cherubini U., Gobbi F., (2013), A Convolution-based Autoregressive Process, [in:] Workshop on Copula in Mathematics and Quantitative Finance. Lecture Notes in Statistics-Proceedings, [eds.:] F. Durante, W. Haerdle, P. Jaworski, Springer, Berlin/Heidelberg.
  • [13] Cherubini U., Gobbi F., Mulinacci S., (2016), Convolution Copula Econometrics, Springer Briefs in Statistics.
  • [14] Clements M. P., Smith J., (1997), The performance of alternative forecasting methods for SETAR models, International Journal of Forecasting 13, 463-475.
  • [15] Crowder M. J., (1976), Maximum likelihood estimation for dependent observations, Journal of Royal Statistical Society B 38, 45-53.
  • [16] Darsow W. F., Nguyen B., Olsen E. T., (1992), Copulas and Markov processes, Illinois Journal of Mathematics 36(4), 600-642.
  • [17] Douc R., Moulines E., Stoffer D. S., (2014), Nonlinear Time Series. Theory, Methods and Applications with R Examples, CRC Press.
  • [18] Engle R., (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica 50(4), 987-1007.
  • [19] Fan J., Yao Q., (2003), Nonlinear Time Series: Nonparametric and Patrametric Methods, Springer-Verlag, New York.
  • [20] Fang W., Miller S. M., (2009), Modeling the volatility of real GDP growth: The case of Japan revisited, Japan and the World Economy 21(3), 312-324.
  • [21] Fountas S., Karanasos M., Mendoza A., (2004), Output variability and economic growth: the Japanese case, Bullettin of Economic Research 56, 353-363.
  • [22] Gobbi F., Mulinacci S., (2020), Mixing and moments properties of a nonstationary copula-based Markov process, Communications in Statistics - Theory and Methods 49(18), 4559-4570.
  • [23] Gobbi F., Mulinacci S., (2020), State-Dependent Autoregressive Models: Properties, Estimation and Forecasting, available at: arXiv:2002.03134v1.
  • [24] Gobbi F., (2021), The problem of detecting nonlinearity in time series generated by a state-dependent autoregressive model. A simulation study, to appear in: International Journal of Operational Research.
  • [25] Granger C. W. J., Terasvirta T., (1993), Modelling Nonlinear Economics Relationships, Oxford University Press, Oxford.
  • [26] Haggan V., Ozaki T., (1981), Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model, Biometrica 68(1), 189- 196.
  • [27] Hamori S., (2000), Volatility of real GDP: Some evidence from the United States, the United Kingdom and Japan, Japan and the World Economy 12, 143-152.
  • [28] Hastie T., Tibshirani R., (1990), Generalized additive models, Chapman & Hall, New York.
  • [29] Ho K. Y., Tsui A. K. C., (2003), Asymmetric volatility of real GDP: some evidence from Canada, Japan, United Kingdom, and the United States, Japan and the World Economy 15, 437-445.
  • [30] Ibragimov R., (2009), Copula-based Characterizations for Higher Order Markov Processes, Econometric Theory 25, 819-846.
  • [31] Jarque C. M., Bera A. K., (1980), Efficient tests for normality homoscedasticity and serial independence of regression residuals, Economics Letters 6, 255-259.
  • [32] Jarque C. M., Bera A. K., (1987), A test for normality of observations and regression residuals, International Statistical Review 55, 163-172.
  • [33] Krager H., Kluger P., (1993), Nonlinearities in foreign exchange markets: a different perspective, Journal of International Money and Finance 12, 195-208.
  • [34] Lee T. H., White H., Granger C. W. J., (1993), Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests, Journal of Econometrics 56, 269-290.
  • [35] Ljung G. M., Box G. E. P., (1978), On a measure of lack of fit in time series models, Biometrika 65, 297-303.
  • [36] McLeod A. I., Li W. K., (1983), Diagnostic checking ARMA time series models using squared residual autocorrelations, Journal of Time Series Analysis 4, 269- 273.
  • [37] Nelsen R. B., (2006), An Introduction to Copulas, Springer.
  • [38] Potter S., (1995), A nonlinear approach to U.S. GNP, Journal of Applied Econometrics 10, 109-125.
  • [39] Priestley M. B., (1980), State-Dependent Models: A General Approach to Nonlinear Time Series Analysis, Journal of Time Series Analysis 1, 47-71.
  • [40] Terasvirta T., Anderson H., (1992), Characterizing Nonlinearities in Business Cycle Using Smooth Transition Autoregressive Models, Journal of Applied Econometrics 7, 119-136.
  • [41] Terasvirta T., Lin C. F., Granger C. W. J., (1993), Power of the Neural Network Linearity Test, Journal of Time Series Analysis 14, 209-220.
  • [42] Tjostheim D., (1986), Estimation in nonlinear time series models, Stochastic Processes and their Applications 21, 251-273.
  • [43] Tiao G. C., Tsay R. S., (1994), Some advances in nonlinear and adaptive modelling time series, Journal of Forecasting 13, 109-131.
  • [44] Tong H., (1978), On a threshold model, [in:] Pattern Recognition and Signal Processing, [eds.:] C. H. Chen, 101-141, Amsterdam: Sijhoff and Noordoff.
  • [45] Tong H., Lim K. S., (1980), Threshold autoregression, limit cycles and cyclical data, Journal of the Royal Statistical Society B 42, 245-268.
  • [46] Tong H., (1983), Threshold Models in Nonlinear Time Series Analysis, SpringerVerlag, New York.
  • [47] Tong H., (1986), On estimating thresholds in autoregressive models, Journal of Time Series Analysis 7, 178-190.
  • [48] Tong H., (1995), Nonlinear Time Series: A Dynamical System Approach, Oxford University Press.
  • [49] Tsay R.S., (1986), Nonlinearity Tests For Time Series, Biometrika 73, 461-466.
  • [50] White H., (1984), Asymptotic theory for econometricians, Academic Press, New York.
  • [51] White H., (1994), Estimation, Inference and Specification Analysis, Econometric Society Monographs n. 22, Cambridge University Press, Cambridge.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171647106

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.