PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | nr 40 | 64--78
Tytuł artykułu

Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article. (original abstract)
Czasopismo
Rocznik
Numer
Strony
64--78
Opis fizyczny
Twórcy
  • CECOLAB - Collaborative Laboratory Towards Circular Economy, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
Bibliografia
  • S.S. Hassan, G.A. Williams, A.K. Jaiswal, Lignocellulosic Biorefineries in Europe: Current State and Prospects, "Trends in Biotechnology", 37 (2019) 231-234. https://doi.org/10.1016/j.tibtech.2018.07.002.
  • J.H. Clark, Green biorefinery technologies based on waste biomass, "Green Chemistry", 21 (2019) 1168-1170. https://doi.org/10.1039/c9gc90021g.
  • P. Gurria, T. Ronzon, S. Tamosiunas, R. Lopez, S. Garcia Condado, J. Guillen, N.E. Cazzaniga, R. Jonsson, M. Banja, G. Fiore, R. M'Barek, Biomass flows in the European Union: The Sankey biomass diagram-towards a cross-set integration of biomass, 2017. https://ec.europa.eu/jrc/en/publication/biomass-flows-european-union-sankey-biomass-diagram-towards-cross-set-integration-biomass.
  • J. Cai, Y. He, X. Yu, S.W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, A. V. Bridgwater, Review of physicochemical properties and analytical characterization of lignocellulosic biomass, "Renewable and Sustainable Energy Reviews", 76 (2017) 309-322. https://doi.org/10.1016/j.rser.2017.03.072.
  • J.C. Del Río, J. Rencoret, A. Gutiérrez, T. Elder, H. Kim, J. Ralph, Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall, "ACS Sustainable Chemistry & Engineering", 8 (2020) 4997-5012. https://doi.org/10.1021/acssuschemeng.0c01109.
  • M. Kuhlberg, T. Särkkä, J. Uusivuori, Technological Transformation in the Global Pulp and Paper Industry: Concluding Remarks, in: Springer, 2018: pp. 279-282. https://doi.org/10.1007/978-3-319-94962-8_13.
  • J. Wang, L. Wang, D.J. Gardner, S.M. Shaler, Z. Cai, Towards a cellulose-based society: opportunities and challenges, "Cellulose", 28 (2021) 4511-4543. https://doi.org/10.1007/s10570-021-03771-4.
  • P. Bajpai, Pulp and Paper Industry: Energy Conservation, Elsevier B.V., 2016. https://doi.org/10.1016/C2014-0-02105-3.
  • D. Khatiwada, S. Leduc, S. Silveira, I. McCallum, Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil, "Renewable Energy", 85 (2016) 371-386. https://doi.org/10.1016/j.renene.2015.06.009.
  • Z. Sun, B. Fridrich, A. De Santi, S. Elangovan, K. Barta, Bright Side of Lignin Depolymerization: Toward New Platform Chemicals, "Chemical Reviews", 118 (2018) 614-678. https://doi.org/10.1021/acs.chemrev.7b00588.
  • B.M. Upton, A.M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective, "Chemical Reviews", 116 (2016) 2275-2306. https://doi.org/10.1021/acs.chemrev.5b00345.
  • M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, J. Ralph, R. Rinaldi, Y. Román-Leshkov, J.S.M. Samec, B.F. Sels, F. Wang, Guidelines for performing lignin-first biorefining, "Energy & Environmental Science", 14 (2021) 262-292. https://doi.org/10.1039/d0ee02870c.
  • T. Welton, Ionic liquids: a brief history, "Biophysical Reviews", 10 (2018) 691-706. https://doi.org/10.1007/s12551-018-0419-2.
  • D. Zhao, Y. Liao, Z.D. Zhang, Toxicity of ionic liquids, "Clean - Soil, Air, Water", 35 (2007) 42-48. https://doi.org/10.1002/clen.200600015.
  • S. Tsuchitani, T. Fukutake, D. Mukai, H. Miki, K. Kikuchi, Unstable Spreading of Ionic Liquids on an Aqueous Substrate, "Langmuir", 33 (2017) 11040-11046. https://doi.org/10.1021/acs.langmuir.7b01799.
  • A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, "Chemical Communications", 1 (2003) 70-71. https://doi.org/10.1039/b210714g.
  • M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho, Insights into the Nature of Eutectic and Deep Eutectic Mixtures, "Journal of Solution Chemistry", 48 (2019) 962-982. https://doi.org/10.1007/s10953-018-0793-1.
  • D.O. Abranches, M.A.R. Martins, L.P. Silva, N. Schaeffer, S.P. Pinho, J.A.P. Coutinho, Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type v des, "Chemical Communications", 55 (2019) 10253-10256. https://doi.org/10.1039/c9cc04846d.
  • E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, "Chemical Reviews", 114 (2014) 11060-11082. https://doi.org/10.1021/cr300162p.
  • Y.A. Elhamarnah, M. Nasser, H. Qiblawey, A. Benamor, M. Atilhan, S. Aparicio, A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents, "Journal of Molecular Liquids", 277 (2019) 932-958. https://doi.org/10.1016/j.molliq.2019.01.002.
  • M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Are deep eutectic solvents benign or toxic?, "Chemosphere", 90 (2013) 2193-2195. https://doi.org/10.1016/j.chemosphere.2012.11.004.
  • A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents - Solvents for the 21st century, "ACS Sustainable Chemistry & Engineering", 2 (2014) 1063-1071. https://doi.org/10.1021/sc500096j.
  • I.P.E. Macário, F. Jesus, J.L. Pereira, S.P.M. Ventura, A.M.M. Gonçalves, J.A.P. Coutinho, F.J.M. Gonçalves, Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory, "Chemosphere", 212 (2018) 890-897. https://doi.org/10.1016/j.chemosphere.2018.08.153.
  • Z.-L. Huang, B.-P. Wu, Q. Wen, T.-X. Yang, Z. Yang, Deep eutectic solvents can be viable enzyme activators and stabilizers, "Journal of Chemical Technology & Biotechnology", 89 (2014) 1975-1981. https://doi.org/10.1002/jctb.4285.
  • K. Radošević, M. Cvjetko Bubalo, V. Gaurina Srček, D. Grgas, T. Landeka Dragičević, R.I. Redovniković, Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents, "Ecotoxicology and Environmental Safety", 112 (2015) 46-53. https://doi.org/10.1016/j.ecoenv.2014.09.034.
  • X.-D.D. Hou, Q.-P.P. Liu, T.J. Smith, N. Li, M.-H.H. Zong, Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids, "PLoS One", 8 (2013) e59145. https://doi.org/ARTN e59145 DOI 10.1371/journal.pone.0059145.
  • I.A. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D.S. Argyropoulos, Dissolution of wood in ionic liquids, "Journal of Agricultural and Food Chemistry", 55 (2007) 9142-9148. https://doi.org/10.1021/jf071692e.
  • S.P. Magalhães da Silva, A.M. da Costa Lopes, L.B. Roseiro, R. Bogel-Łukasik, Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids, "RSC Advances", 3 (2013) 16040-16050. https://doi.org/10.1039/c3ra43091j.
  • A.M. da Costa Lopes, R.M.G.G. Lins, R.A. Rebelo, R.M. Lukasik, R.M. Łukasik, Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid, "Green Chemistry", 20 (2018) 4043-4057. https://doi.org/10.1039/c8gc01763h.
  • A.M. da Costa Lopes, M. Brenner, P. Falé, L.B. Roseiro, R. Bogel-Łukasik, Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO2, "ACS Sustainable Chemistry & Engineering", 4 (2016) 3357-3367. https://doi.org/10.1021/acssuschemeng.6b00429.
  • A.M. da Costa Lopes, K.G. João, A.R.C. Morais, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquids as a tool for lignocellulosic biomass fractionation, "Sustainable Chemical Processes", 1 (2013) 3. https://doi.org/10.1186/2043-7129-1-3.
  • A. Brandt, J.P. Hallett, D.J. Leak, R.J. Murphy, T. Welton, The effect of the ionic liquid anion in the pretreatment of pine wood chips, "Green Chemistry", 12 (2010) 672-67. https://doi.org/10.1039/b918787a.
  • M. Zavrel, D. Bross, M. Funke, J. Büchs, A.C. Spiess, High-throughput screening for ionic liquids dissolving (ligno-)cellulose, "Bioresource Technology",100 (2009) 2580-2587. https://doi.org/10.1016/j.biortech.2008.11.052.
  • A.M. da Costa Lopes, K.G. João, D.F. Rubik, E. Bogel-Łukasik, L.C. Duarte, J. Andreaus, R. Bogel-Łukasik, Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation, "Bioresource Technology",142 (2013) 198-208. https://doi.org/10.1016/j.biortech.2013.05.032.
  • M.T. Clough, K. Geyer, P.A. Hunt, S. Son, U. Vagt, T. Welton, Ionic liquids: Not always innocent solvents for cellulose, "Green Chemistry", 17 (2015) 231-243. https://doi.org/10.1039/c4gc01955e.
  • M.T. Clough, K. Geyer, P.A. Hunt, J. Mertes, T. Welton, Thermal decomposition of carboxylate ionic liquids: Trends and mechanisms, "Physical Chemistry Chemical Physics", 15 (2013) 20480-20495. https://doi.org/10.1039/c3cp53648c.
  • E.C. Achinivu, R.M. Howard, G. Li, H. Gracz, W.A. Henderson, Lignin extraction from biomass with protic ionic liquids, "Green Chemistry", 16 (2014) 1114-1119. https://doi.org/10.1039/c3gc42306a.
  • C.L.B. Reis, L.M.A. e. Silva, T.H.S. Rodrigues, A.K.N. Félix, R.S. de Santiago-Aguiar, K.M. Canuto, M.V.P. Rocha, Pretreatment of cashew apple bagasse using protic ionic liquids: Enhanced enzymatic hydrolysis, "Bioresource Technology", 224 (2017) 694-701. https://doi.org/10.1016/j.biortech.2016.11.019.
  • E.G.A. Rocha, T.C. Pin, S.C. Rabelo, A.C. Costa, Evaluation of the use of protic ionic liquids on biomass fractionation, "Fuel", 206 (2017) 145-154. https://doi.org/10.1016/j.fuel.2017.06.014.
  • A. Brandt-Talbot, F.J.V. Gschwend, P.S. Fennell, T.M. Lammens, B. Tan, J. Weale, J.P. Hallett, An economically viable ionic liquid for the fractionation of lignocellulosic biomass, "Green Chemistry", 19 (2017) 3078-3102. https://doi.org/10.1039/c7gc00705a.
  • F.J.V. Gschwend, L.M. Hennequin, A. Brandt-Talbot, F. Bedoya-Lora, G.H. Kelsall, K. Polizzi, P.S. Fennell, J.P. Hallett, Towards an environmentally and economically sustainable biorefinery: heavy metal contaminated waste wood as a low-cost feedstock in a low-cost ionic liquid process, "Green Chemistry", 22 (2020) 5032-5041. https://doi.org/10.1039/d0gc01241f.
  • A. Ovejero-Pérez, V. Rigual, J.C. Domínguez, M.V. Alonso, M. Oliet, F. Rodriguez, Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride, "International Journal of Biological Macromolecules", 157 (2020) 461-469. https://doi.org/10.1016/j.ijbiomac.2020.04.194.
  • M.M. Hossain, A. Rawal, L. Aldous, Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: Anion effects, enzymatic hydrolysis, solid-state NMR, distillation, and recycle, "ACS Sustainable Chemistry & Engineering", 7 (2019) 11928-11936. https://doi.org/10.1021/acssuschemeng.8b05987.
  • Uju, A. Nakamoto, Y. Shoda, M. Goto, W. Tokuhara, Y. Noritake, S. Katahira, N. Ishida, C. Ogino, N. Kamiya, Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass, "Bioresource Technology", 135 (2013) 103-108. https://doi.org/10.1016/j.biortech.2012.06.096.
  • N. Sathitsuksanoh, K.M. Holtman, D.J. Yelle, T. Morgan, V. Stavila, J. Pelton, H. Blanch, B.A. Simmons, A. George, Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production, "Green Chemistry",16 (2014) 1236-1247. https://doi.org/10.1039/c3gc42295j.
  • J.Y. Kim, E.J. Shin, I.Y. Eom, K. Won, Y.H. Kim, D. Choi, I.G. Choi, J.W. Choi, Structural features of lignin macromolecules extracted with ionic liquid from poplar wood, "Bioresource Technology", 102 (2011) 9020-9025. https://doi.org/10.1016/j.biortech.2011.07.081.
  • J.L. Wen, S.L. Sun, B.L. Xue, R.C. Sun, Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment, "Journal of Agricultural and Food Chemistry", 61 (2013) 635-645. https://doi.org/10.1021/jf3051939.
  • J.L. Wen, T.Q. Yuan, S.L. Sun, F. Xu, R.C. Sun, Understanding the chemical transformations of lignin during ionic liquid pretreatment, "Green Chemistry", 16 (2014) 181-190. https://doi.org/10.1039/c3gc41752b.
  • A. Brandt, L. Chen, B.E. Van Dongen, T. Welton, J.P. Hallett, Structural changes in lignins isolated using an acidic ionic liquid water mixture, "Green Chemistry", 17 (2015) 5019-5034. https://doi.org/10.1039/c5gc01314c.
  • F.J.V. Gschwend, C.L. Chambon, M. Biedka, A. Brandt-Talbot, P.S. Fennell, J.P. Hallett, Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids, "Green Chemistry", 21 (2019) 692-703. https://doi.org/10.1039/c8gc02155d.
  • M. Francisco, A. Van Den Bruinhorst, M.C. Kroon, New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing, "Green Chemistry", 14 (2012) 2153-2157. https://doi.org/10.1039/c2gc35660k.
  • CEPI, Unfold the future. The Two Team Project, 2013.
  • A.K. Kumar, B.S. Parikh, M. Pravakar, Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue, "Environmental Science and Pollution Research", 23 (2016) 9265-9275. https://doi.org/10.1007/s11356-015-4780-4.
  • C.W. Zhang, S.Q. Xia, P.S. Ma, Facile pretreatment of lignocellulosic biomass using deep eutectic solvents, "Bioresource Technology", 219 (2016) 1-5. https://doi.org/10.1016/j.biortech.2016.07.026.
  • Z. Chen, C. Wan, Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment, "Bioresource Technology", 250 (2018) 532-537. https://doi.org/10.1016/j.biortech.2017.11.066.
  • C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K.K. Ramasamy, M. Wolcott, X. Zhang, Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization, "Green Chemistry", 18 (2016) 5133-5141. https://doi.org/10.1039/c6gc01007e.
  • X.J. Shen, J.L. Wen, Q.Q. Mei, X. Chen, D. Sun, T.Q. Yuan, R.C. Sun, Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization, "Green Chemistry", 21 (2019) 275-283. https://doi.org/10.1039/c8gc03064b.
  • F.H.B. Sosa, D.O. Abranches, A.M. Da Costa Lopes, J.A.P. Coutinho, M.C. Da Costa, Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents, "ACS Sustainable Chemistry & Engineering", 8 (2020) 18577-18589. https://doi.org/10.1021/acssuschemeng.0c06655.
  • J.L.K. Mamilla, U. Novak, M. Grilc, B. Likozar, Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals, "Biomass and Bioenergy", 120 (2019) 417-425. https://doi.org/10.1016/j.biombioe.2018.12.002.
  • D. Smink, A. Juan, B. Schuur, S.R.A. Kersten, Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification, "Industrial & Engineering Chemistry Research", 58 (2019) 16348-16357. https://doi.org/10.1021/acs.iecr.9b03588.
  • A.M. Da Costa Lopes, J.R.B. Gomes, J.A.P. Coutinho, A.J.D. Silvestre, Novel insights into biomass delignification with acidic deep eutectic solvents: A mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance, "Green Chemistry", 22 (2020) 2474-2487. https://doi.org/10.1039/c9gc02569c.
  • K.H. Kim, T. Dutta, J. Sun, B. Simmons, S. Singh, Biomass pretreatment using deep eutectic solvents from lignin derived phenols, "Green Chemistry", 20 (2018) 809-815. https://doi.org/10.1039/c7gc03029k.
  • B. Soares, A.J.D. Silvestre, P.C. Rodrigues Pinto, C.S.R. Freire, J.A.P. Coutinho, Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents, "ACS Sustainable Chemistry & Engineering", 7 (2019) 12485-12493. https://doi.org/10.1021/acssuschemeng.9b02109.
  • B. Soares, D.J.P. Tavares, J.L. Amaral, A.J.D. Silvestre, C.S.R. Freire, J.A.P. Coutinho, Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents, "ACS Sustainable Chemistry & Engineering", 5 (2017) 4056-4065. https://doi.org/10.1021/acssuschemeng.7b00053.
  • D.O. Abranches, J. Benfica, B.P. Soares, A. Leal-Duaso, T.E. Sintra, E. Pires, S.P. Pinho, S. Shimizu, J.A.P. Coutinho, Unveiling the mechanism of hydrotropy: Evidence for water-mediated aggregation of hydrotropes around the solute, "Chemical Communications", 56 (2020) 7143-7146. https://doi.org/10.1039/d0cc03217d.
  • B. Soares, A.M. da Costa Lopes, A.J.D. Silvestre, P.C. Rodrigues Pinto, C.S.R. Freire, J.A.P. Coutinho, Wood delignification with aqueous solutions of deep eutectic solvents, "Industrial Crops and Products", 160 (2021) 113128. https://doi.org/10.1016/j.indcrop.2020.113128.
  • Y. Wang, X. Meng, K. Jeong, S. Li, G. Leem, K.H. Kim, Y. Pu, A.J. Ragauskas, C.G. Yoo, Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion, "ACS Sustainable Chemistry & Engineering", 8 (2020) 12542-12553. https://doi.org/10.1021/acssuschemeng.0c03533.
  • Y.T. Tan, G.C. Ngoh, A.S.M. Chua, Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin, "Bioresource Technology", 281 (2019) 359-366. https://doi.org/10.1016/j.biortech.2019.02.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171647900

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.