PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | nr 41 | 19--27
Tytuł artykułu

Microalgae potential in the capture of CO2 emission

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a perspective projected to reduce the atmospheric concentration of greenhouse gases, in which carbon dioxide is the master, the use of microalgae is an effective and decisive response. The review describes the bio circularity of the process of abatement of carbon dioxide through biofixation in algal biomass, highlighting the potential of its reuse in the production of high value-added products.(original abstract)
Czasopismo
Rocznik
Numer
Strony
19--27
Opis fizyczny
Twórcy
  • Department of Life Sciences, University of Modena and Reggio Emilia
autor
  • Department of Life Sciences, University of Modena and Reggio Emilia
  • Department of Life Sciences, University of Modena and Reggio Emilia
autor
  • Department of Life Sciences, University of Modena and Reggio Emilia
Bibliografia
  • T.M.L. Wigley, P.D. Jones, P.M. Kelly, Global warming?, "Nature", 291 (1981) 285. https://doi.org/10.1038/291285a0.
  • N.J.L. Lenssen, G.A. Schmidt, J.E. Hansen, M.J. Menne, A. Persin, R. Ruedy, D. Zyss, Improvements in the GISTEMP Uncertainty Model, "Journal of Geophysical Research: Atmospheres", 124 (2019) 6307-6326. https://doi.org/10.1029/2018JD029522.
  • M. Molazadeh, H. Ahmadzadeh, H.R. Pourianfar, S. Lyon, P.H. Rampelotto, The use of microalgae for coupling wastewater treatment with CO2 biofixation, "Frontiers in Bioengineering and Biotechnology", 7 (2019). https://doi.org/10.3389/fbioe.2019.00042.
  • W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, "Bioresource Technology", 184 (2015) 190-201. https://doi.org/10.1016/j.biortech.2014.11.026.
  • S. Solomon, J.S. Daniel, T.J. Sanford, D.M. Murphy, G.K. Plattner, R. Knutti, P. Friedlingstein, Persistence of climate changes due to a range of greenhouse gases, "Proceedings of the National Academy of Sciences of the United States of America", 107 (2010) 18354-18359. https://doi.org/10.1073/pnas.1006282107.
  • J. Singh, D.W. Dhar, Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art, "Frontiers in Marine Science", 6 (2019) 1-9. https://doi.org/10.3389/fmars.2019.00029.
  • A. Boretti, Covid 19 impact on atmospheric CO2 concentration, "International Journal of Global Warming", 21 (2020) 317-323. https://doi.org/10.1504/IJGW.2020.108686.
  • B. Zhao, Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, "Renewable and Sustainable Energy Reviews", 31 (2014) 121-132. https://doi.org/10.1016/j.rser.2013.11.054.
  • Intergovernmental Panel on Climate Change, Climate Change 2014 Mitigation of Climate Change, Cambridge University Press, Cambridge, 2014. https://doi.org/10.1017/cbo9781107415416.
  • X. Li, A. Kraslawski, Conceptual process synthesis: Past and current trends, "Chemical Engineering and Processing: Process Intensification", 43 (2004) 583-594. https://doi.org/10.1016/j.cep.2003.05.002.
  • K. Damen, M. Van Troost, A. Faaij, W. Turkenburg, A comparison of electricity and hydrogen production systems with CO 2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, "Progress in Energy and Combustion Science", 32 (2006) 215-246. https://doi.org/10.1016/j.pecs.2005.11.005.
  • J.N. Knudsen, J.N. Jensen, P.J. Vilhelmsen, O. Biede, Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents, in: "Energy Procedia", 2009: pp. 783-790. https://doi.org/10.1016/j.egypro.2009.01.104.
  • Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, "AIChE Journal", 59 (2012) 215-228. https://doi.org/10.1002/aic.
  • P. Stegmann, M. Londo, M. Junginger, The circular bioeconomy: Its elements and role in European bioeconomy clusters, "Resources, Conservation & Recycling", X. 6 (2020) 100029. https://doi.org/10.1016/j.rcrx.2019.100029.
  • A. Shahid, A. Zafar Khan, T. Liu, S. Malik, I. Afzal, M.A. Mehmood, Production and Processing of Algal Biomass, in: Algae Based Polymers, Blends, and Composites Chemistry, Biotechnology and Materials Science, Elsevier, 2017: pp. 273-299. https://doi.org/10.1016/B978-0-12-812360-7.00007-0.
  • C.W.W. Ng, R. Tasnim, J.L. Coo, Effects of atmospheric CO2 concentration on soil-water retention and induced suction in vegetated soil, "Engineering Geology", 242 (2018) 108-120. https://doi.org/10.1016/j.enggeo.2018.06.001.
  • [M.K. Lam, K.T. Lee, Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection, "Biotechnology Advances", 29 (2011) 124-141. https://doi.org/10.1016/j.biotechadv.2010.10.001.
  • C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review, "Water Research", 111 (2017) 297-317. https://doi.org/10.1016/j.watres.2017.01.005.
  • J. Masojídek, G. Torzillo, M. Koblízek, Photosynthesis in Microalgae, in: Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Ed., John Wiley & Sons, Ltd, Oxford, UK, 2013: pp. 21-36. https://doi.org/10.1002/9781118567166.ch2.
  • I. Afzal, A. Shahid, M. Ibrahim, T. Liu, M. Nawaz, M.A. Mehmood, Microalgae: A Promising Feedstock for Energy and High-Value Products, in: Algae Based Polymers, Blends, and Composites Chemistry, Biotechnology and Materials Science, Elsevier, 2017: pp. 55-75. https://doi.org/10.1016/B978-0-12-812360-7.00003-3.
  • A.K. Vuppaladadiyam, J.G. Yao, N. Florin, A. George, X. Wang, L. Labeeuw, Y. Jiang, R.W. Davis, A. Abbas, P. Ralph, P.S. Fennell, M. Zhao, Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization, "ChemSusChem", 11 (2018) 334-355. https://doi.org/10.1002/cssc.201701611.
  • C.Y. Kao, T.Y. Chen, Y. Bin Chang, T.W. Chiu, H.Y. Lin, C. Da Chen, J.S. Chang, C.S. Lin, Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp., "Bioresource Technology", 166 (2014) 485-493. https://doi.org/10.1016/j.biortech.2014.05.094.
  • P. Kandimalla, S. Desi, H. Vurimindi, Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production, "Environmental Science and Pollution Research", 23 (2016) 9345-9354. https://doi.org/10.1007/s11356-015-5264-2.
  • M. Ota, M. Takenaka, Y. Sato, R. Lee Smith, H. Inomata, Effects of light intensity and temperature on photoautotrophic growth of a green microalga, Chlorococcum littorale, "Biotechnology Reports", 7 (2015) 24-29. https://doi.org/10.1016/j.btre.2015.05.001.
  • L. Meier, R. Pérez, L. Azócar, M. Rivas, D. Jeison, Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading, "Biomass and Bioenergy", 73 (2015) 102-109. https://doi.org/10.1016/j.biombioe.2014.10.032.
  • Y. Chisti, Biodiesel from microalgae, "Biotechnology Advances", 25 (2007) 294-306.
  • E. Jacob-Lopes, C.H.G. Scoparo, L.M.C.F. Lacerda, T.T. Franco, Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors, "Chemical Engineering and Processing: Process Intensification", 48 (2009) 306-310. https://doi.org/10.1016/j.cep.2008.04.007.
  • A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions, "Trends in Biotechnology", 28 (2010) 371-380. https://doi.org/10.1016/j.tibtech.2010.04.004.
  • M. Morales, L. Sánchez, S. Revah, The impact of environmental factors on carbon dioxide fixation by microalgae, "FEMS Microbiology Letters", 365 (2018). https://doi.org/10.1093/femsle/fnx262.
  • H.W. Yen, I.C. Hu, C.Y. Chen, J.S. Chang, Design of Photobioreactors for Algal Cultivation, in: Biofuels from Algae, Second, Elsevier Inc., 2013: pp. 23-45. https://doi.org/10.1016/B978-0-444-59558-4.00002-4.
  • L. Moraes, G.M. Rosa, A. Morillas España, L.O. Santos, M.G. Morais, E. Molina Grima, J.A.V. Costa, F.G. Acién Fernández, Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: Influence of the CO2 flow rate on the culture performance in tubular photobioreactors, "Process Biochemistry", 76 (2019) 171-177. https://doi.org/10.1016/j.procbio.2018.10.010.
  • G. de M. Michele, K. da S. Cleber, A.H. Adriano, A.V.C. Jorge, Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium, "African Journal of Microbiology Research", 9 (2015) 1935-1940. https://doi.org/10.5897/ajmr2015.7632.
  • W. Klinthong, Y.H. Yang, C.H. Huang, C.S. Tan, A Review: Microalgae and their applications in CO2 capture and renewable energy, "Aerosol and Air Quality Research", 15 (2015) 712-742. https://doi.org/10.4209/aaqr.2014.11.0299.
  • S.R. Ronda, C. Kethineni, L.C.P. Parupudi, V.B.S.C. Thunuguntla, S. Vemula, V.S. Settaluri, P.R. Allu, S.K. Grande, S. Sharma, C.V. Kandala, A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere, "Bioresource Technology", 152 (2014) 283-291. https://doi.org/10.1016/j.biortech.2013.10.091.
  • F. Kaštánek, S. Šabata, O. Šolcová, Y. Maléterová, P. Kaštánek, I. Brányiková, K. Kuthan, V. Zachleder, In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide, "Waste Management & Research", 28 (2010) 961-966. https://doi.org/10.1177/0734242X10375866.
  • J. Doucha, F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, "Journal of Applied Phycology", 17 (2005) 403-412. https://doi.org/10.1007/s10811-005-8701-7.
  • S.Y. Chiu, C.Y. Kao, T.T. Huang, C.J. Lin, S.C. Ong, C. Da Chen, J.S. Chang, C.S. Lin, Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures, "Bioresource Technology", 102 (2011) 9135-9142. https://doi.org/10.1016/j.biortech.2011.06.091.
  • F.F. Li, Z.H. Yang, R. Zeng, G. Yang, X. Chang, J.B. Yan, Y.L. Hou, Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber, "Industrial & Engineering Chemistry Research", 50 (2011) 6496-6502. https://doi.org/10.1021/ie200040q.
  • I. de Godos, J.L. Mendoza, F.G. Acién, E. Molina, C.J. Banks, S. Heaven, F. Rogalla, Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases, "Bioresource Technology", 153 (2014) 307-314. https://doi.org/10.1016/j.biortech.2013.11.087.
  • W. Zhou, J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives, "Renewable and Sustainable Energy Reviews", 76 (2017) 1163-1175. https://doi.org/10.1016/j.rser.2017.03.065.
  • M. Dębowski, M. Zieliński, J. Kazimierowicz, N. Kujawska, S. Talbierz, Microalgae cultivation technologies as an opportunity for bioenergetic system development-advantages and limitations, "Sustainability", 12 (2020) 1-37. https://doi.org/10.3390/su12239980.
  • M.H. Wilson, J. Groppo, A. Placido, S. Graham, S.A. Morton, E. Santillan-Jimenez, A. Shea, M. Crocker, C. Crofcheck, R. Andrews, CO2 recycling using microalgae for the production of fuels, "Applied Petrochemical Research", 4 (2014) 41-53. https://doi.org/10.1007/s13203-014-0052-3.
  • S.D. Milanese, Eni sviluppa una innovativa tecnologia per la biofissazione della CO2 con luce artificiale, (2020).
  • L. Brennan, P. Owende, Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products, "Renewable and Sustainable Energy Reviews", 14 (2010) 557-577.
  • S. Venkata Mohan, J.A. Modestra, K. Amulya, S.K. Butti, G. Velvizhi, A Circular Bioeconomy with Biobased Products from CO2 Sequestration, "Trends in Biotechnology", 34 (2016) 506-519. https://doi.org/10.1016/j.tibtech.2016.02.012.
  • S.P. Singh, P. Singh, Effect of CO2 concentration on algal growth: A review, "Renewable and Sustainable Energy Reviews", 38 (2014) 172-179. https://doi.org/10.1016/j.rser.2014.05.043.
  • J.H. Duarte, L.S. Fanka, J.A.V. Costa, Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation, "Bioresource Technology", 214 (2016) 159-165. https://doi.org/10.1016/j.biortech.2016.04.078.
  • F. Bauer, Narratives of biorefinery innovation for the bioeconomy: Conflict, consensus or confusion?, "Environmental Innovation and Societal Transitions", 28 (2018) 96-107. https://doi.org/10.1016/j.eist.2018.01.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171648024

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.