PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 2 | 13--25
Tytuł artykułu

A Novel Data Mining Approach for Defect Detection in the Printed Circuit Board Manufacturing Process

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aims to propose an effective model for the detection of defective Printed Circuit Boards (PCBs) in the output stage of the Surface-Mount Technology (SMT) line. The emphasis is placed on increasing the classification accuracy, reducing the algorithm training time, and a further improvement of the final product quality. This approach combines a feature extraction technique, the Principal Component Analysis (PCA), and a classification algorithm, the Support Vector Machine (SVM), with previously applied Automated Optical Inspection (AOI). Different types of SVM algorithms (linear, kernels and weighted) were tuned to get the best accuracy of the resulting algorithm for separating good-quality and defective products. A novel automated defect detection approach for the PCB manufacturing process is proposed. The data from the real PCB manufacturing process were used for this experimental study. The resulting PCALWSVM model achieved 100 % accuracy in the PCB defect detection task. This article proposes a potentially unique model for accurate defect detection in the PCB industry. A combination of PCA and LWSVM methods with AOI technology is an original and effective solution. The proposed model can be used in various manufacturing companies as a postprocessing step for an SMT line with AOI, either for accurate defect detection or for preventing false calls. (original abstract)
Rocznik
Numer
Strony
13--25
Opis fizyczny
Twórcy
  • University of Economics in Prague, Czech Republic
  • University of Economics in Prague, Czech Republic
Bibliografia
  • Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American Mathematical Society, 68, 337-404. doi: 10.2307/1990404
  • Banjoko, A.W., Yahya, W.B., Garba, M.K., & Abdulazeez, K.O. (2019). Weighted support vector machine algorithm for efficient classification and prediction of binary response data. Journal of Physics: Conference Series, 1366. doi: 10.1088/1742-6596/1366/1/012101
  • Bartova, B., Bina, V., & Vachova, L. (2022). A PRISMA-driven systematic review of data mining methods used for defects detection and classification in the manufacturing industry. Production, 32. doi: 10.1590/0103-6513.20210097
  • Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152. doi: 10.1145/130385.130401
  • Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 67-121. doi: 10.1023/A:1009715923555
  • Chapelle, O., & Schölkopf, B. (2002). Incorporating invariances in non-linear support vector machines. In T.G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems (pp. 594-609). Cambridge, MA: MIT Press.
  • Chavan, R.R., Chavan, S.A., Dokhe, G.D., Wagh, M.B., & Vaidya, A.S. (2016). Quality Control of PCB using Image Processing. International Journal of Computer Applications, 141(5), 28-32.10.5120/ijca2016909623
  • Cortes, C., & Vapnik, V.N. (1995). Support-vector networks, Machine Learning, 20, 273-297. doi: 10.1007/BF00994018
  • Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. NY Cambridge University Press. doi: 10.1017/CBO9780511801389
  • Ghosh, A., Guha, T., Bhar, R.B., & Das, S. (2010). Pattern classification of fabric defects using support vector machine. International Journal of Clothing Science and Technology, 23(2/3), 142-151. doi: 10.1108/09556221111107333
  • Hassanin, A.A.I.M., Abd El-Samie, F.E., & El Banby, G.M. (2019). A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations. Multimedia Tools and Applications, 78(24), 34437-34457. doi: 10.1007/s11042-019-08097-9
  • Hu, B., & Wang, J. (2020). Detection of PCB Surface Defects With Improved Faster-RCNN and Feature Pyramid Network. IEEE Access, 8, 108335-108345. doi: 10.1109/ACCESS.2020.3001349
  • Isa, D., Rajkumar, R., & Woo, K.C. (2007). Pipeline Defect Detection Using Support Vector Machines. 6th WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, Egypt. Retrieved from http://www.wseas.us/e-library/conferences/2007egypt/papers/568-369.pdf
  • Kakkar, S., & Narag, A.S. (2007). Recommending a TQM model for Indian organisations. The TQM Magazine, 19(6), 328-353. doi: 10.1108/09544780710756232
  • Kim, Y.-G., & Park, T.-H. (2020). SMT Assembly Inspection Using Dual-Stream Convolutional Networks and Two Solder Regions. Applied Sciences, 10(13). doi: 10.3390/app10134598
  • Kumar, P., Shreekanth, T., & Prajwal, M. (2020). Automated Quality Inspection of PCB Assembly Using Image Processing. International Journal of Image, Graphics and Signal Processing, 12(3). doi: 10.5815/ijigsp.2020.03.02
  • Mahfuz, R.A., M., Hoque, R., Pramanik, B.K., Hamid, E., & Ali Moni, M. (2020). SVM Model for Feature Selection to Increase Accuracy and Reduce False Positive Rate in Falls Detection. doi: 10.1109/IC-4ME247184.2019.9036529
  • Meyer, D. (2020). Support Vector Machines. Retrieved from https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
  • Mujica, L.E., Vehí, J., Ruiz, M., Verleysen, M., Staszewski, W., & Worden, K. (2008). Multivariate statistics process control for dimensionality reduction in structural assessment. Mechanical Systems and Signal Processing, 22(1), 155-171. doi: 10.1016/j.ymssp.2007.05.001
  • Reshadat, V., & Kapteijns, R.A.J.W. (2021). Improving the Performance of Automated Optical Inspection (AOI) Using Machine Learning Classifiers. 2021 International Conference on Data and Software Engineering (ICoDSE). doi: 10.1109/ICoDSE53690.2021.9648445
  • Rokach, L., & Maimon, O. (2006). Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach. Journal of Intelligent Manufacturing, 17(3), 285-299. doi: 10.1007/s10845-005-0005-x
  • Shawe-Taylor, J., Bartlett, P.L., Willianmson, R.C., & Anthony, M. (1998). Structural risk minimization over data-dependent hierarchies, IEEE Trans. Information Theory, 44(5), 1926-1940. doi: 10.1109/18.705570
  • Soukup, R. (2010). A methodology for optimization of false call rate in automated optical inspection post reflow. doi: 10.1109/ISSE.2010.5547304
  • Sun, J., Wang, C., Sun, J., & Wang, L. (2013). Analog Circuit Soft Fault Diagnosis based on PCA and PSO-SVM. Journal of Networks, 8(12), 2791-2796.10.4304/jnw.8.12.2791-2796
  • Suo, H., Li, M., Lu, P., & Yan, Y. (2008). Using SVM as Back-End Classifier for Language Identification. EURASIP Jurnal Audio, Speech, and Music Processing, 674859. doi: 10.1155/2008/674859
  • Tseng, T.-L., Aleti, K.R., Hu, Z., & Kwon, Y. (2015). E-quality control: A support vector machines approach. Journal of Computational Design and Engineering, 3, 91-101. doi: 10.1016/j.jcde.2015.06.010
  • Vapnik, V. (1998). The Support Vector Method of Function Estimation. Nonlinear Modelling, 55-85. doi: 10.1007/978-1-4615-5703-6_3
  • Vapnik, V.N. (1995). The nature of statistical learning theory. New York, USA: Springer-Verlag.10.1007/978-1-4757-2440-0
  • Vapnik, V.N. (1999). An overview of statistical learning theory, IEEE Trans. Neural Networks, 10(5), 988-999. doi: 10.1109/72.78864018252602
  • Vapnik, V.N., Golowich, S., & Smola, A. (1997). Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information processing Systems. Cambridge, MA: MIT Press.
  • Wang, S. yuan, Zhao, Y., & Wen, L. (2016). PCB welding spot detection with image processing method based on automatic threshold image segmentation algorithm and mathematical morphology. Circuit World, 42(3), 97-103. doi: 10.1108/CW-08-2015-0039
  • Williamson, R.C., Smola, A., & Schölkopf, B. (1999). Entropy numbers, operators and support vector kernels. Cambridge, MA: MIT Press.
  • Xanthopoulos, P., & Razzaghi, T. (2014). A weighted support vector machine method for control chart pattern recognition. Computers and Industrial Engineering, 70, 134-149. doi: 10.1016/j.cie.2014.01.014
  • Yang, X., Song, Q., & Wang, Y. (2007). A weighted support vector machine for data classification. International Journal of Pattern Recognition and Artificial Intelligence, 21(5), 961-976. doi: 10.1109/IJCNN.2005.1555965
  • Yin, Y., Luo, H., Sa, J., & Zhang, Q. (2019). Study and application of improved level set method with prior graph cut in PCB image segmentation. Circuit World, 45(1), 55-64. doi: 10.1108/CW-03-2019-0028
  • Zakaria, S.S., Amir, A., Yaakob, N., & Nazemi, S. (2020). Automated Detection of Printed Circuit Boards (PCB) Defects by Using Machine Learning in Electronic Manufacturing: Current Approaches. Materials Science and Engineering, 767. doi: 10.1088/1757-899X/767/1/012064
  • Zhang, C., Chen, X., Chen, M., Chen, S.-C., & Shyu, M.-L. (2005). A multiple instance learning approach for content-based image retrieval using one-class support vector machine. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '05), 1142-1145. doi: 10.1109/ICME.2005.1521628
  • Zhang, L., Lin, F., & Zhang, B. (2001). Support vector machine learning for image retrieval, Proceedings of the IEEE International Conference on Image Processing (ICIP '01), 2, 721-724. doi: 10.1109/ICIP.2001.958595
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171649478

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.