PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | nr 37 | 94--112
Tytuł artykułu

Methods for the valorisation of agri-food waste according to the circular bioeconomy concept

Autorzy
Warianty tytułu
Kierunki zagospodarowania odpadów rolno-spożywczych w biogospodarce o obiegu zamkniętym
Języki publikacji
EN
Abstrakty
EN
Waste management represents a global and ever-growing issue attracting more attention according to environmental, ethical, social and economic implications. Some of the most significant waste produced globally is generated in the agri-food sector (AFS). AF residues often represent a resource of valuable substances that should be recycled and reused. Making full use of the potential in AF waste (AFW) is in line with the concept of a circular bioeconomy. This approach is consistent with the strategic elements of sustainable development, according to which the economy and society are being reorganised. The full utilisation of secondary raw materials associated with transforming primary waste into raw materials for further production increases income for entrepreneurs and reduces risks to the environment. This paper presents the concepts and legal basis of the closed-loop bioeconomy in the European Union and the metathesis of waste management from the AFS according to this model.(original abstract)
Gospodarka odpadami stanowi globalne i stale zyskujące na znaczeniu zagadnienie, które przyciąga coraz większą uwagę ze względu na implikacje środowiskowe, etyczne, społeczne i ekonomiczne. Jedną z największych mas odpadów wytwarzanych na świecie generuje przemysł rolno-spożywczy (PRS). Pozostałości PRS niejednokrotnie stanowią zasoby cennych substancji, które powinny być poddawane recyklingowi i ponownie zagospodarowane. Pełne wykorzystanie potencjału odpadów PRS (OPRS) jest zgodne z koncepcją biogospodarki o obiegu zamkniętym. Podejście to koresponduje ze strategicznymi elementami koncepcji zrównoważonego rozwoju, zgodnie z którymi reorganizowana jest zarówno gospodarka, jak i społeczeństwo. Pełne wykorzystanie surowców wtórnych, związane z przekształcaniem odpadów w surowce do dalszej produkcji, zwiększa dochody przedsiębiorców i zmniejsza zagrożenia dla środowiska. W niniejszym opracowaniu przedstawiono koncepcje i podstawy prawne biogospodarki o obiegu zamkniętym w Unii Europejskiej oraz metatezę gospodarki odpadami funkcjonującej według tego modelu.(abstrakt oryginalny)
Rocznik
Numer
Strony
94--112
Opis fizyczny
Twórcy
autor
  • Uniwersytet Ekonomiczny we Wrocławiu
Bibliografia
  • Abbas, C. A. (2006). Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In Yeasts in food and beverages (pp. 285-334). Berlin, Heidelberg: Springer.
  • Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I. M., and Koutinas, A. A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, (145), 710-716.
  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M. J. (2010). Pre-treatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851-4861.
  • Alzuwaid, N. T., Pleming, D., Fellows, C. M., and Sissons, M. (2021). Fortification of durum wheat spaghetti and common wheat bread with wheat bran protein concentrate - impacts on nutrition and technological properties. Food Chemistry, 334(127497).
  • Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., ... Kneifel, W. (2014). Wheat bran-based biorefinery 2: Valorization of products. LWT-Food Science and Technology, 56(2), 222-231.
  • Awasthi, M. K., Sarsaiya, S., Wainaina, S., Rajendran, K., Kumar, S., Quan, W., ... Taherzadeh, M. J. (2019). A critical review of organic manure biorefinery models towards a sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renewable and Sustainable Energy Reviews, (111), 115-131.
  • Baiano, A. (2014). Recovery of biomolecules from food wastes - a review. Molecules, 19(9), 14821--14842.
  • Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., and Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, (225), 10-22.
  • Baumann, I., and Westermann, P. (2016). Microbial production of short chain fatty acids from lignocellulosic biomass: Current processes and market. BioMed Research International.
  • Bednarski, W., Adamczak, M., and Krzemieniowski, M. (2003). Biotechnologia utylizacji tłuszczów z produktów ubocznych, odpadów i ścieków przemysłu spożywczego i gastronomicznego. Przemysł Spożywczy, 57(7), 9-14.
  • Belc, N., Mustatea, G., Apostol, L., Iorga, S., Vlăduţ, V. N., and Mosoiu, C. (2019). Cereal supply chain waste in the context of a circular economy. In E3S Web of Conferences (vol. 112, p. 03031). EDP Sciences.
  • Bti, H. (2011). Production of Bacillus thuringiensis subsp. Sraelensis from an agro-based product (corncob). Current Science, 101(8).
  • Bujak, J. (2015). Thermal treatment of medical waste in a rotary kiln. Journal of Environmental Management, (162), 139-147.
  • Carlozzi, P., Touloupakis, E., Di Lorenzo, T., Giovannelli, A., Seggiani, M., Cinelli, P., and Lazzeri, A. (2019). Whey and molasses as inexpensive raw materials for the parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. Journal of Biotechnology, (303), 37-45.
  • Carus, M., and Dammer, L. (2018). The circular bioeconomy - concepts, opportunities, and limitations. Industrial Biotechnology, 14(2), 83-91.
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., and Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource Technology, (248), 57-67.
  • Chmiel, B. (1999). Ochrona środowiska. Podręcznik do ćwiczeń terenowych: chemiczne aspekty ochrony środowiska. Lublin: Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej.
  • Contreras, E., Sepúlveda, L., and Palma, C. (2012). Valorization of agro-industrial wastes as biosorbent for the removal of textile dyes from aqueous solutions. International Journal of Chemical Engineering.
  • Council, G. B. (2018). Global Bioeconomy Summit Conference Report: Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing. Secretariat of the German Bioeconomy Council, Berlin, Germany. Bioeconomy Policy Part III: Update Report of National Strategies around the World.
  • Cusenza, M. A., Longo, S., Cellura, M., Guarino, F., Messineo, A., Mistretta, M., and Volpe, M. (2021). Environmental assessment of a waste-to-energy practice: The pyrolysis of agro-industrial biomass residues. Sustainable Production and Consumption, (28), 866-876.
  • Daniel, Z., Juliszewski, T., Kowalczyk, Z., Malinowski, M., Sobol, Z., and Wrona, P. (2012). Metoda szczegółowej klasyfikacji odpadów z sektora rolniczego i rolno-spożywczego. Infrastruktura i Ekologia Terenów Wiejskich, (2/IV).
  • Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30(2), 219-230.
  • Deroover, L., Tie, Y., Verspreet, J., Courtin, C. M., and Verbeke, K. (2020). Modifying wheat bran to improve its health benefits. Critical Reviews in Food Science and Nutrition, 60(7), 1104-1122.
  • Djukić-Vuković, A., Mladenović, D., Radosavljević, M., Kocić-Tanackov, S., Pejin, J., and Mojović, L. (2016). Waste from bioethanol and beer productions as substrates for l (+) lactic acid production - a comparative study. Waste Management, (48), 478-482.
  • Ferraz, E., Coroado, J., Gamelas, J., Silva, J., Rocha, F., and Velosa, A. (2013). Spent brewery grains for improvement of thermal insulation of ceramic bricks. Journal of Materials in Civil Engineering, 25(11), 1638-1646.
  • Frączek, J., Hebda, T., and Łapczyńska-Kordon, B. (2012). Ocena możliwości wykorzystania bioodpadów na cele energetyczne. Engineering Sciencesand Technologies/Nauki Inżynierskie i Technologie, 3(6).
  • Gao Y., Ki, D., and Liu, Y. (2012). Production of single cell protein from soy molasses using Candida tropicalis. Ann Microbiol, 62(3), 1165-1172
  • Gebremikael, M. T., Ranasinghe, A., Hosseini, P. S., Laboan, B., Sonneveld, E., Pipan, M., ... De Neve, S. (2020). How do novel and conventional agri-food wastes, co-products and by-products improve soil functions and soil quality? Waste Management, (113), 132-144.
  • George, D. M., Vincent, A. S., and Mackey, H. R. (2020). An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnology Reports, (28), e00563.
  • Gharfalkar, M., Court, R., Campbell, C., Ali, Z., and Hillier, G. (2015). Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Management, (39), 305-313.
  • Gojgic-Cvijovic, G. D., Jakovljevic, D. M., Loncarevic, B. D., Todorovic, N. M., Pergal, M. V., Ciric, J., ... Vrvic, M. M. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. International Journal of Biological Macromolecules, (121), 142-151.
  • Gralak, A. (2021). Wdrażanie modelu gospodarczego opartego na obiegu zamkniętym w biogospodarce. Problems of World Agriculture/Problemy Rolnictwa Światowego, 21(1827-2022-185), 24-40.
  • Gregg, J. S., Jürgens, J., Happel, M. K., Strøm-Andersen, N., Tanner, A. N., Bolwig, S., and Klitkou, A. (2020). Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. Journal of Cleaner Production, 267(122093).
  • Hafid, H. S., Omar, F. N., Abdul Rahman, N. A., and Wakisaka, M. (2021). Innovative conversion of food waste into biofuel in an integrated waste management system. Critical Reviews in Environmental Science and Technology, 1-40.
  • Hussain, Z., Sajjad, W., Khan, T., and Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: A review. Cellulose, 26(5), 2895-2911.
  • Jayathilakan, K., Sultana, K., Radhakrishna, K., and Bawa, A. S. (2012). Utilization of by-products and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278-293.
  • Jędrczak, A. (2008). Biologiczne przetwarzanie odpadów (s. 366-371). Warszawa: Wydawnictwo Naukowe PWN.
  • Keri Marshall, N. D. (2004). Therapeutic applications of whey protein. Alternative Medicine Review, 9(2), 136-156.
  • Kirchherr, J. W., Hekkert, M. P., Bour, R., Huijbrechtse-Truijens, A., Kostense-Smit, E., and Muller, J. (2017). Breaking the barriers to the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl., (127), 221-232.
  • Kopik, M. (2019). Raport: Zagospodarowanie odpadów z rolnictwa i przemysłu rolno-spożywczego - stan obecny i perspektywy (pp. 28-34). Europejska Agencja Rozwoju Sp. J. Kopik i wspólnicy.
  • Kot, A. M., Pobiega, K., Piwowarek, K., Kieliszek, M., Błażejak, S., Gniewosz, M., and Lipińska, E. (2020). Biotechnological methods of management and utilization of potato industry waste - a review. Potato Research, 63(3), 431-447.
  • Kowalczyk, B. (2021). Dla jednych odpad, dla innych surowiec. Zagospodarowanie ubocznych produktów spalania. Energetyka Cieplna i Zawodowa.
  • Kulczycka, J. (2019). Gospodarka o obiegu zamkniętym w polityce i badaniach naukowych. Kraków: Wydawnictwo IGSMiE PAN.
  • Lacy, P., and Rutqvist, J. (2015). The product life-extension business model: Products that are built to last. In Waste to wealth (pp. 68-83). London: Palgrave Macmillan.
  • Lesniak, W., Pietkiewicz, J., and Podgorski, W. (2002). Citric acid fermentation from starch and dextrose syrups by a trace metal resistant mutant of Aspergillus niger. Biotechnology Letters, 24(13), 1065-1067.
  • Liguori, R., Soccol, C. R., Porto de Souza Vandenberghe, L., Woiciechowski, A. L., and Faraco, V. (2015). Second generation ethanol production from brewers' spent grain. Energies, 8(4), 2575-2586.
  • Łaba, S. (2012). Proekologiczne działania w zakresie zagospodarowania odpadów w przemyśle owocowo-warzywnym. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 5(14).
  • Martin, M., and Parsapour, A. (2012). Upcycling waste with biogas production: An exergy and economic analysis (Venice 2012: International Symposium on Energy from Biomass and Waste).
  • Meneses, N. G., Martins, S., Teixeira, J. A., and Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer's spent grains. Separation and Purification Technology, (108), 152-158.
  • Mirabella, N., Castellani, V., and Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, (65), 28-41.
  • Mollea, C., Marmo, L., and Bosco, F. (2013). Valorisation of cheese whey, a by-product from the dairy industry. In: Food Industry. IntechOpen.
  • Mora, L., Toldrá-Reig, F., Reig, M., and Toldrá, F. (2018). Meat by-products: New insights into potential technical and health applications. Novel Proteins for Food, Pharmaceuticals, and Agriculture: Sources, Applications, and Advances, (101).
  • OECD. (2009). The bioeconomy to 2030: Designing a policy agenda. Organisation for Economic Co-operation and Development. Retrieved from https://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/42837897.pdf
  • Okoro, O. V., Sun, Z., and Birch, J. (2017). Meat processing waste as a potential feedstock for biochemicals and biofuels - A review of possible conversion technologies. Journal of Cleaner Production, (142), 1583-1608.
  • Olędzki, R., and Walaszczyk, E. (2020). Bionanoceluloza - właściwości, pozyskiwanie i perspektywy zastosowania w przemyśle spożywczym. Postępy Mikrobiologii, 59(1).
  • Olsson, O., Roos, A., Guisson, R., Bruce, L., Lamers, P., Hektor, B., ... Hildebrandt, J. (2018). Time to tear down the pyramids? A critique of cascading hierarchies as a policy tool. Wiley Interdisciplinary Reviews: Energy and Environment, 7(2), e279.
  • Olsztyńska, I. (2018). Kaskadowe wykorzystanie biomasy a GOZ. Energia i Recykling: Gospodarka Obiegu Zamkniętego.
  • Palanivelu, K., Ramachandran, A., and Raghavan, V. (2021). Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions - a review. Biomass Conversion and Biorefinery, 11(5), 2247-2267.
  • Panda S. K., Mishra, S. S., Kayitesi, E. et al. (2016). Microbial-processing of fruit and vegetable wastes for the production of vital enzymes and organic acids: Biotechnology and scopes. Env Res., (146), 161-172.
  • Panda, S. K., Ray, R. C., Mishra, S. S., and Kayitesi, E. (2018). Microbial processing of fruit and vege- table wastes into potential bio-commodities: a review. Critical Reviews in Biotechnology, 38(1), 1-16.
  • Pandey, A., Soccol, C. R., Nigam, P., and Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74(1), 69-80.
  • Panjičko, M., Zupančič, G. D., and Zelić, B. (2015). Anaerobic biodegradation of raw and pre-treated brewery spent grain utilizing solid state anaerobic digestion. Acta Chimica Slovenica, 62(4), 818-827.
  • Parfitt, J., Barthel, M., and Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065-3081.
  • Park, J. Y., and Chertow, M. R. (2014). Establishing and testing the "reuse potential" indicator for managing wastes as resources. Journal of Environmental Management, (137), 45-53.
  • Phairuang, W., Suwattiga, P., Chetiyanukornkul, T., Hongtieab, S., Limpaseni, W., Ikemori, F., ... Furuuchi, M. (2019). The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environmental Pollution, (247), 238-247.
  • Pink, M., and Wojnarowska, M. (2020). Biogospodarka. Wybrane aspekty. Difin SA.
  • Pires, E. J., Ruiz, H. A., Teixeira, J. A., and Vicente, A. A. (2012). A new approach on brewer's spent grains treatment and potential use as lignocellulosic yeast cells carriers. Journal of Agricultural and Food Chemistry, 60(23), 5994-5999.
  • Prazeres, A. R., Carvalho, F., and Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, (110), 48-68.
  • Ptak, M., Skowrońska, A., Pińkowska, H., and Krzywonos, M. (2021). Sugar beet pulp in the context of developing the concept of circular bioeconomy. Energies, 15(1), 175.
  • Qin, S., Giri, B. S., Patel, A. K., Sar, T., Liu, H., Chen, H., ... Taherzadeh, M. J. (2021). Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresource Technology, (321), 124496.
  • Rizzello, C. G., Cassone, A., Coda, R., and Gobbetti, M. (2011). Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry, 127(3), 952-959.
  • Rumbold, K., van Buijsen, H. J., Overkamp, K. M., van Groenestijn, J. W., Punt, P. J., and van der Werf, M. J. (2009). Microbial production host selection for converting second-generation feedstocks into bioproducts. Microbial Cell Factories, 8(1), 1-11.
  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., and Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531.
  • Salminen, E., and Rintala, J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste - a review. Bioresource Technology, 83(1), 13-26.
  • Schacht, C., Zetzl, C., and Brunner, G. (2008). From plant materials to ethanol by means of supercritical fluid technology. The Journal of Supercritical Fluids, 46(3), 299-321.
  • Schmidt, W., Commeh, M., Olonade, K., Schiewer, G. L., Dodoo-Arhin, D., Dauda, R., ... Rogge, A. (2021). Sustainable circular value chains: From rural waste to feasible urban construction materials solutions. Developments in the Built Environment, 6(100047).
  • Schulze, G. (2016). Growth within: A circular economy vision for a competitive Europe (pp. 1-22). Ellen MacArthur Foundation and the McKinsey Center for Business and Environment.
  • Singh, A., Kuila, A., Adak, S., Bishai, M., and Banerjee, R. (2011). Use of fermentation technology on vegetable residues for value added product development: A concept of zero waste utilization. International Journal of Food and Fermentation Technology, 1(2), 173-184.
  • Sirohi, R., Gaur, V. K., Pandey, A. K., Sim, S. J., and Kumar, S. (2021). Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. Bioresource Technology, 326(124734).
  • Spalvin K., Ivanov, K., and Blumberg, D. (2018). Single cell protein production from waste biomass: A review of various agricultural by-products. Agronom Res, 16(S2), 1493-1508.
  • Suman, G., Nupur, M., Anuradha, S., and Pradeep, B. (2015). Single cell protein production: A review. International Journal of Current Microbiology and Applied Sciences, 4(9), 251-262.
  • Suminska, T., and Sierakowska, M. (2019). Wysłodki buraczane wartościową paszą dla zwierząt. Postępy Nauki i Technologii Przemysłu Rolno-Spożywczego, 74(2).
  • Toldrá, F., Mora, L., and Reig, M. (2016). New insights into meat by-product utilization. Meat Science, (120), 54-59.
  • Urbaniak, M., and Błędzki, A. K. (2013). Biokompozyty epoksydowe wzmacniane mikrowłóknami z odpadów zbożowych. Przetwórstwo Tworzyw, 19(5 (155)), 554-557.
  • Viuda-Martos, M., Fernández-López, J., and Pérez-Álvarez, J. A. (2019). Valuable compounds extraction from cereal waste and by-products. In Green extraction and valorization of by-products from food processing (pp. 153-186). CRC Press.
  • Wu, X., Gu, L., Prior, R. L., and McKay, S. (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 52(26), 7846-7856.
  • Xiao, R., Awasthi, M. K., Li, R., Park, J., Pensky, S. M., Wang, Q., ... Zhang, Z. (2017). Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresource Technology, (246), 203-213.
  • Yunus, F. U. N., Nadeem, M., and Rashid, F. (2015). Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of the Institute of Brewing, 121(4), 553-557
  • Zarębska, J. (2017). Gospodarka o obiegu zamkniętym drogą do zrównoważonego rozwoju. Systemy Wspomagania w Inżynierii Produkcji, (6).
  • Żary-Sikorska, E., Wichrowska, D., Gozdecka, G., and Gęsiński, K. (2015). Analiza sensoryczna przetworów z mało znanych odmian marchwi. Ekologia i Technika, 23(5), 274-278.
  • http://eur-lex.europa.eu, available 07.03.2021
  • https://energy.ec.europa.eu/topics/energy-strategy/national-energy-and-climate-plans-necps_en
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171655846

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.