PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | vol. 30, iss. 4 | 42--54
Tytuł artykułu

Categorical Variable Problem in Real Estate Submarket Determination with Gwr Model

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Real estate market analysis can involve many aspects. One of them is the study of the influence of various factors on prices and property values. For this type of issues, different kinds of measures and statistical models are often used. Many of them do not give unambiguous results. One of the reasons for this is the fact that the real estate market is characterized by the concept of local markets, which may be affected in different ways by economic, social, technical, environmental and other factors. Incorporating the influence of local markets, otherwise known as submarkets, into models often helps improve the precision of mass real estate valuation results. The delineation of submarket boundaries can be done in several different ways. One tool that is helpful in these types of situations are geographically weighted regression (GWR) models. The problem that may arise when using such models is related to the nature of some market factors, which may be of a qualitative nature. Because neighborhoods of individual properties may lack variability in terms of some variables, estimating GWR models is significantly difficult or impossible. The study will present an approach in which the categorical variables are transformed into a single synthetic variable, and only this variable will constitute the explanatory variable in the model. Areas where the slope parameters of the GWR model are similar were considered a submarket. The purpose of this paper is to determine the boundaries of submarkets in the study area and to compare the results of modeling the value of real estate using models that do not take local markets into account, as well as those that take into account local markets determined by experts and using the GWR model. (original abstract)
Rocznik
Strony
42--54
Opis fizyczny
Twórcy
  • University of Szczecin, Poland
Bibliografia
  • Assunção, R. M., Neves, M. C., Câmara, G., & da Costa Freitas, C. (2006). Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science, 20(7), 797-811. https://doi.org/10.1080/13658810600665111
  • Benjamin, J., Guttery, R., & Sirmans, C. (2004). Mass Appraisal: An Introduction to Multiple Regression Analysis for Real Estate Valuation. Journal of Real Estate Practice and Education, 7. https://doi.org/10.1080/10835547.2004.12091602
  • Beracha, E., Hardin III, W. G., & Skiba, H. M. (2018). Real Estate Market Segmentation: Hotels as Exemplar. JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS, 56(2), 252-273. https://doi.org/10.1007/s11146-017-9598-z
  • Bourassa, S., Cantoni, E., & Hoesli, M. (2007). Spatial Dependence, Housing Submarkets, and House Price Prediction. The Journal of Real Estate Finance and Economics, 35, 143-160. https://doi.org/10.1007/s11146-007-9036-8
  • Bourassa, S., Cantoni, E., &Hoesli, M. (2010). Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods. Journal of Real Estate Research, 32, 139-160. https://doi.org/10.1080/10835547.2010.12091276
  • Bradbury, K. L., Mayer, C. J., & Case, K. E. (2001). Property tax limits, local fiscal behavior, and property values: evidence from Massachusetts under Proposition 212. Journal of Public Economics, 80(2), 287-311. https://doi.org/10.1016/S0047-2727(00)00081-5
  • Cellmer, R., Cichulska, A., & Belej, M. (2020). Spatial Analysis of Housing Prices and Market Activity with the Geographically Weighted Regression. ISPRS International Journal of Geo-Information, 9, 380. https://doi.org/10.3390/ijgi9060380
  • Chen, C. F., & Rothschild, R. (2010). An application of hedonic pricing analysis to the case of hotel rooms in Taipei. Tourism Economics, 16(3), 685-694. https://doi.org/10.5367/000000010792278310
  • Chen, J., & Hao, Q. (2010). Submarket, Heterogeneity and Hedonic Prediction Accuracy of Real Estate Prices: Evidence from Shanghai. International Real Estate Review, 13, 190-217. https://doi.org/10.53383/100125
  • Cox, T., &Hurtubia, R. (2020). Subdividing the sprawl: Endogenous segmentation of housing submarkets in expansion areas of Santiago, Chile. Environment and Planning B: Urban Analytics and City Science, 48(7), 1770-1786. https://doi.org/10.1177/2399808320947728
  • Dmytrów, K., Gdakowicz, A., &Putek-Szeląg, E. (2020). Methods of Analyzing Qualitative Variable Correlation on the Real Estate Market. Real Estate Management and Valuation, 28(1), 80-90. https://doi.org/doi:10.2478/remav-2020-0007
  • Doszyń, M. (2020). Econometric Support of a Mass Valuation Process. Folia Oeconomica Stetinensia, 20(1), 81-94. https://doi.org/10.2478/foli-2020-0005
  • Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247-1265. https://doi.org/10.1080/24694452.2017.1352480
  • Fotheringham, S. A., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression. JOHN WILEY & SONS, LTD.
  • Gabrielli, L., Giuffrida, S., & Trovato, M. R. (2017). Gaps and Overlaps of Urban Housing Sub-market: Hard Clustering and Fuzzy Clustering Approaches. In S. Stanghellini, P. Morano, M. Bottero, & A. Oppio (Eds.), APPRAISAL: FROM THEORY TO PRACTICE (pp. 203-219). SPRINGER INTERNATIONAL PUBLISHING AG. https://doi.org/10.1007/978-3-319-49676-4_15
  • Helbich, M., Brunauer, W., Hagenauer, J., & Leitner, M. (2013). Data-Driven Regionalization of Housing Markets. Annals of the Association of American Geographers, 103(4), 871-889. https://doi.org/10.1080/00045608.2012.707587
  • Hwang, S. (2015). Residential Segregation, Housing Submarkets, and Spatial Analysis: St. Louis and Cincinnati as a Case Study. Housing Policy Debate, 25(1), 91-115. https://doi.org/10.1080/10511482.2014.934703
  • Keskin, B., & Watkins, C. (2016). Defining spatial housing submarkets: Exploring the case for expert delineated boundaries. Urban Studies, 54(6), 1446-1462. https://doi.org/10.1177/0042098015620351
  • Kestens, Y., Thériault, M., &Rosiers, F. (2006). Heterogeneity in hedonic modelling of house prices: Looking at buyers' household profiles. Journal of Geographical Systems, 8, 61-96. https://doi.org/10.1007/s10109-005-0011-8
  • Kopczewska, K. (2020). Applied Spatial Statistics and Econometrics: Data Analysis in R. https://doi.org/10.4324/9781003033219
  • Kopczewska, K. (2021). Spatial machine learning: new opportunities for regional science. Annals of Regional Science. https://doi.org/10.1007/s00168-021-01101-x
  • Kopczewska, K., & Ćwiakowski, P. (2021). Spatio-temporal stability of housing submarkets. Tracking spatial location of clusters of geographically weighted regression estimates of price determinants. Land Use Policy, 103. https://doi.org/10.1016/j.landusepol.2021.105292
  • Korteweg, A., & Sorensen, M. (2016). Estimating Loan-to-Value Distributions. Real Estate Economics, 44(1), 41-86. https://doi.org/https://doi.org/10.1111/1540-6229.12086
  • Manjula, R., Jain, S., Srivastava, S., & Rajiv Kher, P. (2017). Real estate value prediction using multivariate regression models. IOP Conference Series: Materials Science and Engineering, 263(4). https://doi.org/10.1088/1757-899X/263/4/042098
  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Stewart Fotheringham, A. (2019). MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060269
  • Santos, J. A. C., Fernández-Gámez, M., Solano-Sánchez, M. Á., Rey-Carmona, F. J., del Rio, L., & Caridad, L. (2021). Valuation models for holiday rentals' daily rates: Price composition based on booking.com. Sustainability (Switzerland), 13(1), 1-16. https://doi.org/10.3390/su13010292
  • Schnare, A. B., &Struyk, R. J. (1976). Segmentation in urban housing markets. Journal of Urban Economics, 3(2), 146-166. https://doi.org/https://doi.org/10.1016/0094-1190(76)90050-4
  • Sirmans, G. S., Macpherson, D. A., &Zietz, E. N. (2005). The Composition of Hedonic Pricing Models. Journal of Real Estate Literature, 13(1), 3-43. http://www.jstor.org/stable/44103506
  • Soler, I. P., & Gemar, G. (2018). Hedonic price models with geographically weighted regression: An application to hospitality. Journal of Destination Marketing and Management, 9, 126-137. https://doi.org/10.1016/j.jdmm.2017.12.001
  • Thibodeau, T., & Goodman, A. (2007). The Spatial Proximity of Metropolitan Area Housing Submarkets. Real Estate Economics, 35, 209-232. https://doi.org/10.1111/j.1540-6229.2007.00188.x
  • Tomal, M. (2021). Housing market heterogeneity and cluster formation: evidence from Poland. International Journal of Housing Markets and Analysis, 14(5), 1166-1185. https://doi.org/10.1108/IJHMA-09-2020-0114
  • Tomal, M., & Helbich, M. (n.d.). The private rental housing market before and during the COVID-19 pandemic: A submarket analysis in Cracow, Poland. Environment and Planning B: Urban Analytics and City Science, 0(0), 23998083211062908. https://doi.org/10.1177/23998083211062907
  • Tzioumis, K. (2017). Appraisers and Valuation Bias: An Empirical Analysis. Real Estate Economics, 45(3), 679-712. https://doi.org/https://doi.org/10.1111/1540-6229.12133
  • Usman, H., Lizam, M., & Adekunle, M. U. (2020). PROPERTY PRICE MODELLING, MARKET SEGMENTATION AND SUBMARKET CLASSIFICATIONS: A REVIEW. REAL ESTATE MANAGEMENT AND VALUATION, 28(3), 24-35. https://doi.org/10.1515/remav-2020-0021
  • Usman, H., Lizam, M., & Burhan, B. (2021). A PRIORI SPATIAL SEGMENTATION OF COMMERCIAL PROPERTY MARKET USING HEDONIC PRICE MODELLING. REAL ESTATE MANAGEMENT AND VALUATION, 29(2), 16-28. https://doi.org/10.2478/remav-2021-0010
  • Walesiak, M., & Dudek, A. (2010). Finding Groups in Ordinal Data: An Examination of Some Clustering Procedures. In Studies in Classification, Data Analysis, and Knowledge Organization (pp. 185-192). https://doi.org/10.1007/978-3-642-10745-0_19
  • Watkins, C. A. (2001). The Definition and Identification of Housing Submarkets. Environment and Planning A: Economy and Space, 33(12), 2235-2253. https://doi.org/10.1068/a34162
  • Wu, C., & Sharma, R. (2012). Housing submarket classification: The role of spatial contiguity. Applied Geography, 32(2), 746-756. https://doi.org/10.1016/J.APGEOG.2011.08.011
  • Zhang, H., Zhang, J., Lu, S., Cheng, S., & Zhang, J. (2011). Modeling hotel room price with geographically weighted regression. International Journal of Hospitality Management, 30(4), 1036- 1043. https://doi.org/10.1016/j.ijhm.2011.03.010
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171658772

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.