PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 13 | nr 4 | 1047--1080
Tytuł artykułu

Artificial Intelligence-based Decision-making Algorithms, Internet of Things Sensing Networks, and Sustainable Cyber-physical Management Systems in Big Data-driven Cognitive Manufacturing

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: With increasing evidence of cognitive technologies progressively integrating themselves at all levels of the manufacturing enterprises, there is an instrumental need for comprehending how cognitive manufacturing systems can provide increased value and precision in complex operational processes.
Purpose of the article: In this research, prior findings were cumulated proving that cognitive manufacturing integrates artificial intelligence-based decision-making algorithms, real-time big data analytics, sustainable industrial value creation, and digitized mass production.
Methods: Throughout April and June 2022, by employing Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a quantitative literature review of ProQuest, Scopus, and the Web of Science databases was performed, with search terms including "cognitive Industrial Internet of Things", "cognitive automation", "cognitive manufacturing systems", "cognitively-enhanced machine", "cognitive technology-driven automation", "cognitive computing technologies," and "cognitive technologies." The Systematic Review Data Repository (SRDR) was leveraged, a software program for the collecting, processing, and analysis of data for our research. The quality of the selected scholarly sources was evaluated by harnessing the Mixed Method Appraisal Tool (MMAT). AMSTAR (Assessing the Methodological Quality of Systematic Reviews) deployed artificial intelligence and intelligent workflows, and Dedoose was used for mixed methods research. VOSviewer layout algorithms and Dimensions bibliometric mapping served as data visualization tools.
Findings & value added: Cognitive manufacturing systems is developed on sustainable product lifecycle management, Internet of Things-based real-time production logistics, and deep learningassisted smart process planning, optimizing value creation capabilities and artificial intelligencebased decision-making algorithms. Subsequent interest should be oriented to how predictive maintenance can assist in cognitive manufacturing by use of artificial intelligence-based decisionmaking algorithms, real-time big data analytics, sustainable industrial value creation, and digitized mass production. (original abstract)
Rocznik
Tom
13
Numer
Strony
1047--1080
Opis fizyczny
Twórcy
  • Spiru Haret University, Romania
  • The Bucharest University of Economic Studies, Romania
autor
  • Spiru Haret University, Romania
  • Spiru Haret University, Romania
  • Spiru Haret University, Romania
Bibliografia
  • Altaf, A., Abbas, H., Iqbal, F., Khan, F. A., Rubab, S., & Derhab, A. (2021). Context-oriented trust computation model for Industrial Internet of Things. Computers & Electrical Engineering, 92, 107123. doi: 10.1016/j.compeleceng.2021.107123.
  • Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021a). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics, 10(20), 2497. doi: 10.3390/electronics10202497.
  • Andronie, M., Lăzăroiu, G., Ștefănescu, R., Uță, C., & Dijmărescu, I. (2021b). Sustainable, smart, and sensing technologies for cyber-physical manufacturing systems: a systematic literature Review. Sustainability, 13(10), 5495. doi: 10.3390/su13105495.
  • Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., & Dijmărescu, I. (2021c). Sustainable cyber-physical production systems in big data-driven smart urban economy: a systematic literature review. Sustainability, 13(2), 751. doi: 10.3390/su13020751.
  • Androniceanu, A., Nica, E., Georgescu, I., & Sabie, O. M. (2021a). The influence of the ICT on the control of corruption in public administrations of the EU member states: a comparative analysis based on panel data. Administratie si Management Public, 37, 41-59. doi: 10.24818/amp/2021.37-03.
  • Androniceanu, A.-M., Căplescu, R. D., Tvaronavičienė, M, & Dobrin, C. (2021b). The interdependencies between economic growth, energy consumption and pollution in Europe. Energies, 14(9), 2577. doi: 10.3390/en14092577.
  • Androniceanu, A. (2021). Transparency in public administration as a challenge for a good democratic governance. Administratie si Management Public, 36, 149-164. doi: 10.24818/amp/2021.36-09.
  • Bailey, L. (2021). The digital fabric of reproductive technologies: fertility, pregnancy, and menstrual cycle tracking apps. Journal of Research in Gender Studies, 11(2), 126-138. doi: 10.22381/JRGS11220219.
  • Balica, R.-Ș. (2022). Machine and deep learning technologies, wireless sensor networks, and virtual simulation algorithms in digital twin cities. Geopolitics, History, and International Relations, 14(1), 59-74. doi: 10.22381/GHIR14120224.
  • Barbu, C. M., Florea, D. L., Dabija, D. C., & Barbu, M. C. R. (2021). Customer experience in Fintech. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1415-1433. doi: 10.3390/jtaer16050080.
  • Beckett, S. (2022). Machine and deep learning technologies, location tracking and obstacle avoidance algorithms, and cognitive wireless sensor networks in intelligent transportation planning and engineering. Contemporary Readings in Law and Social Justice, 14(1), 41-56. doi: 10.22381/CRLSJ14120223.
  • Blake, R. (2022). Metaverse technologies in the virtual economy: deep learning computer vision algorithms, blockchain-based digital assets, and immersive shared worlds. Smart Governance, 1(1), 35-48. doi: 10.22381/sg1120223.
  • Bratu, S., & Sabău, R. I. (2022). Digital commerce in the immersive metaverse environment: cognitive analytics management, real-time purchasing data, and seamless connected shopping experiences. Linguistic and Philosophical Investigations, 21, 170-186. doi: 10.22381/lpi21202211.
  • Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., & Viroli, M. (2019). A development approach for collective opportunistic edge-of-things services. Information Sciences, 498, 154-169. doi: 10.1016/j.ins.2019.05.058.
  • Cavallo, F., Semeraro, F., Mancioppi, G., Betti, S., & Fiorini, L. (2021). Mood classification through physiological parameters. Journal of Ambient Intelligence and Humanized Computing, 12, 4471-4484. doi: 10.1007/s12652-019-01595-6
  • Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. (2021). A survey of recent advances in edge-computing-powered artificial Intelligence of Things. IEEE Internet of Things Journal, 8(18), 13849-13875. doi: 10.1109/JIOT.2021.3088875.
  • Chung, K., Yoo, H., Choe, D., & Jung, H. (2019). Blockchain network based topic mining process for cognitive manufacturing. Wireless Personal Communications, 105, 583-597. doi: 10.1007/s11277-018-5979-8.
  • Chung, K., & Yoo, H. (2020). Edge computing health model using P2P-based deep neural networks. Peer-to-Peer Networking and Applications, 13, 694-703. doi: 10.1007/s12083-019-00738-y
  • Cug, J., Suler, P., & Taylor, E. (2022). Digital twin-based cyber-physical production systems in immersive 3D environments: virtual modeling and simulation tools, spatial data visualization techniques, and remote sensing technologies. Economics, Management, and Financial Markets, 17(2), 82-96. doi: 10.22381/emfm17220225.
  • Dawson, A. (2022). Data-driven consumer engagement, virtual immersive shopping experiences, and blockchain-based digital assets in the retail metaverse. Journal of Self-Governance and Management Economics, 10(2), 52-66. doi: 10.22381/jsme10220224.
  • Din, I. U., Guizani, M., Rodrigues, J. J. P. C., Hassan, S., & Korotaev, V. V. (2019). Machine learning in the Internet of Things: designed techniques for smart cities. Future Generation Computer Systems, 100, 826-843. doi: 10.1016/j.future.2019.04.017.
  • Ding, K., Zhang, Y., Chan, F. T. S., Zhang, C., Lv, J., Liu, Q., Leng, J., & Fue, H. (2021). A cyber-physical production monitoring service system for energyaware collaborative production monitoring in a smart shop floor. Journal of Cleaner Production, 297, 126599. doi: 10.1016/j.jclepro.2021.126599.
  • Dumitrache, I., Caramihai, S. I., Moisescu, M. A., & Sacala, I. S. (2019). Neuroinspired framework for cognitive manufacturing control. IFAC-PapersOnLine, 52, 910-915. doi: 10.1016/j.ifacol.2019.11.311.
  • Durana, P., Krulicky, T., & Taylor, E. (2022). Working in the metaverse: virtual recruitment, cognitive analytics management, and immersive visualization systems. Psychosociological Issues in Human Resource Management, 10(1), 135-148. doi: 10.22381/pihrm101202210.
  • Elia, G., & Margherita, A. (2021). A conceptual framework for the cognitive enterprise: pillars, maturity, value drivers. Technology Analysis & Strategic Management, 34(4), 377-389. doi: 10.1080/09537325.2021.1901874.
  • ElMaraghy, H., & ElMaraghy, W. (2022). Adaptive cognitive manufacturing system (ACMS) - a new paradigm. International Journal of Production Research, 60(24), 7436-7449. doi: 10.1080/00207543.2022.2078248.
  • Emmer, C., Hofmann, T. M., Schmied, T., Stjepandić, J., & Strietzel, M. (2018). A neutral approach for interoperability in the field of 3D measurement data management. Journal of Industrial Information Integration, 12, 47-56. doi: 10.1016/j.jii.2018.01.006.
  • Ferreras-Higuero, E., Leal-Muñoz, E., García de Jalón, J., Chacón, E., & Vizán, A. (2020). Robot-process precision modelling for the improvement of productivity in flexible manufacturing cells. Robotics and Computer-Integrated Manufacturing, 65, 101966. doi: 10.1016/j.rcim.2020.101966.
  • Gain, U. (2021). Applying frameworks for cognitive services in IIoT. Journal of Systems Science and Systems Engineering, 30, 59-84. doi: 10.1007/s11518-021-5480-x.
  • Gordon, S. (2022). Computer vision algorithms, vehicle navigation and remote sensing technologies, and smart traffic planning and analytics in urban transportation systems. Contemporary Readings in Law and Social Justice, 14(1), 9-24. doi: 10.22381/CRLSJ14120221.
  • Grondys, K., & Ślusarczyk, O. (2022). Passenger potential and the operating result of the public transport organization. Administratie si Management Public, 38, 104-119. doi: 10.24818/amp/2022.38-06.
  • Hawkins, M. (2022a). Virtual employee training and skill development, workplace technologies, and deep learning computer vision algorithms in the immersive metaverse environment. Psychosociological Issues in Human Resource Management, 10(1), 106-120. doi: 10.22381/pihrm10120228.
  • Hawkins, M. (2022b). Metaverse live shopping analytics: retail data measurement tools, computer vision and deep learning algorithms, and decision intelligence and modeling. Journal of Self-Governance and Management Economics, 10(2), 22-36. doi: 10.22381/jsme10220222.
  • Hu, P., Han, Z., Fu, H., & Han, D. (2016). Architecture and implementation of closed-loop machining system based on open STEP-NC controller. International Journal of Advanced Manufacturing Technology, 83, 1361-1375. doi: 10.1007/s00170-015-7631-z.
  • Hu, L., Miao, Y., Wu, G., Hassan, M. M., & Humar, I. (2019). iRobot-Factory: an intelligent robot factory based on cognitive manufacturing and edge computing. Future Generation Computer Systems, 90, 569-577. doi: 10.1016/j.future.2018.08.006.
  • Hudson, J. (2022). Internet of Medical Things-driven remote monitoring systems, big healthcare data analytics, and wireless body area networks in COVID-19 detection and diagnosis. American Journal of Medical Research, 9(1), 81-96. doi: 10.22381/ajmr9120226.
  • Ionescu, L. (2020). Digital data aggregation, analysis, and infrastructures in FinTech operations. Review of Contemporary Philosophy, 19, 92-98. doi: 10.22381/RCP19202010.
  • Kliestik, T., Poliak, M., & Popescu, G. H. (2022a). Digital twin simulation and modeling tools, computer vision algorithms, and urban sensing technologies in immersive 3D environments. Geopolitics, History, and International Relations, 14(1), 9-25. doi: 10.22381/GHIR14120221.
  • Kliestik, T., Novak, A., & Lăzăroiu, G. (2022b). Live shopping in the metaverse: Visual and spatial analytics, cognitive artificial intelligence techniques and algorithms, and immersive digital simulations. Linguistic and Philosophical Investigations, 21, 187-202. doi: 10.22381/lpi21202212.
  • Kovacova, M., Machova, V., & Bennett, D. (2022a). Immersive extended reality technologies, data visualization tools, and customer behavior analytics in the metaverse commerce. Journal of Self-Governance and Management Economics, 10(2), 7-21. doi: 10.22381/jsme10220221.
  • Kovacova, M., Novak, A., Machova, V., & Carey, B. (2022b). 3D virtual simulation technology, digital twin modeling, and geospatial data mining in smart sustainable city governance and management. Geopolitics, History, and International Relations, 14(1), 43-58. doi: 10.22381/GHIR14120223.
  • Krüger, J., Zhao, H., Reis de Ascencao, G., Jacobi, P., Surdilovic, D., Schöll, S., & Polley, W. (2016). Concept of an offline correction method based on historical data for milling operations using industrial robots. Production Engineering, 10, 409-420. doi: 10.1007/s11740-016-0686-3.
  • Ksentini, A., Jebalia, M., Tabbane, S. (2021). IoT/Cloud-enabled smart services: a review on QoS requirements in fog environment and a proposed approach based on priority classification technique. International Journal of Communication Systems, 34, e4269. doi: 10.1002/dac.4269.
  • Kumar, A., & Jaiswal, A. (2021). A deep swarm-optimized model for leveraging industrial data analytics in cognitive manufacturing. IEEE Transactions on Industrial Informatics, 17, 2938-2946. doi: 10.1109/TII.2020.3005532.
  • Lăzăroiu, G., Pera, A., Ștefănescu-Mihăilă, R. O., Mircică, N., & Neguriță, O. (2017). Can neuroscience assist us in constructing better patterns of economic decision-making? Frontiers in Behavioral Neuroscience, 11, 188. doi: 10.3389/fnbeh.2017.00188.
  • Lăzăroiu, G., Andronie, M., Iatagan, M., Geamănu, M., Ștefănescu, R., & Dijmărescu, I. (2022). Deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms in the Internet of Manufacturing Things. ISPRS International Journal of Geo-Information, 11(5), 277. doi: 10.3390/ijgi11050277.
  • Li, Y., Liu, C., Gao, J. X., & Shen, W. (2015). An integrated feature-based dynamic control system for on-line machining, inspection and monitoring. Integrated Computer-Aided Engineering, 22, 187-200. doi: 10.3233/ICA-150483.
  • Li, S., Wang, R., Zheng, P., & Wang, L. (2021a). Towards proactive human-robot collaboration: a foreseeable cognitive manufacturing paradigm. Journal of Manufacturing Systems, 60, 547-552. doi: 10.1016/j.jmsy.2021.07.017.
  • Li, X., Zheng, P., Bao, J., Gao, L., & Xu, X. (2021b). Achieving cognitive mass personalization via the self-X cognitive manufacturing network: an industrialknowledge-graph- and graph-embedding-enabled pathway. Engineering. Advance online publication. doi: 10.1016/j.eng.2021.08.018.
  • Liu, M., Li, X., Li, J., Liu, Y., Zhou, B., & Bao, J. (2022). A knowledge graphbased data representation approach for IIoT-enabled cognitive manufacturing. Advanced Engineering Informatics, 51, 101515. doi: 10.1016/j.aei.2021.101515.
  • Lyons, N. (2022a). Deep learning-based computer vision algorithms, immersive analytics and simulation software, and virtual reality modeling tools in digital twin-driven smart manufacturing. Economics, Management, and Financial Markets, 17(2), 67-81. doi: 10.22381/emfm17220224.
  • Lyons, N. (2022b). Talent acquisition and management, immersive work environments, and machine vision algorithms in the virtual economy of the metaverse. Psychosociological Issues in Human Resource Management, 10(1), 121-134. doi: 10.22381/pihrm10120229.
  • Maier, P., Sachenbacher, M., Rühr, T., & Kuhn, L. (2010). Automated plan assessment in cognitive manufacturing. Advanced Engineering Informatics, 24, 308-319. doi: 10.1016/j.aei.2010.05.015
  • Michalkova, L., Machova, V., & Carter, D. (2022). Digital twin-based product development and manufacturing processes in virtual space: data visualization tools and techniques, cloud computing technologies, and cyber-physical production systems. Economics, Management, and Financial Markets, 17, 37-51. doi: 10.22381/emfm17220222.
  • Mihăilă, R., & Braniște, L. (2021). Digital semantics of beauty apps and filters: Big data-driven facial retouching, aesthetic self-monitoring devices, and augmented reality-based body-enhancing technologies. Journal of Research in Gender Studies, 11(2), 100-112. doi: 10.22381/JRGS11220217.
  • Mircică, N. (2020). Restoring public trust in digital platform operations: machine learning algorithmic structuring of social media content. Review of Contemporary Philosophy, 19, 85-91. doi: 10.22381/RCP1920209.
  • Mladineo, M., Crnjac Zizic, M., Aljinovic, A., & Gjeldum, N. (2022). Towards a knowledge-based cognitive system for industrial application: case of personalized products. Journal of Industrial Information Integration, 27, 100284. doi: 10.1016/j.jii.2021.100284.
  • Nagy, M., & Lăzăroiu, G. (2022). Computer vision algorithms, remote sensing data fusion techniques, and mapping and navigation tools in the Industry 4.0-based Slovak automotive sector. Mathematics, 10(19), 3543. doi: 10.3390/math10193543.
  • Nica, E., Kliestik, T., Valaskova, K., & Sabie, O.-M. (2022). The economics of the metaverse: immersive virtual technologies, consumer digital engagement, and augmented reality shopping experience. Smart Governance, 1(1), 21-34. doi: 10.22381/sg1120222.
  • Palombarini, J., & Martínez, E. (2012). SmartGantt - an intelligent system for real time rescheduling based on relational reinforcement learning. Expert Systems with Applications, 39, 10251-10268. doi: 10.1016/j.eswa.2012.02.176.
  • Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. doi: 10.1016/j.chb.2021.106855.
  • Penumuru, D. P., Muthuswamy, S., & Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31, 1229-1241. doi: 10.1007/s10845-019-01508-6.
  • Perzylo, A., Grothoff, J., Lucio, L., Weser, M., Malakuti, S., Venet, P., Aravantinos, V., & Deppe, T. (2019). Capability-based semantic interoperability of manufacturing resources: A BaSys 4.0 perspective. IFAC-PapersOnLine, 52, 1590-1596. doi: 10.1016/j.ifacol.2019.11.427.
  • Peters, E. (2022a). Big geospatial data analytics, connected vehicle technologies, and visual perception and sensor fusion algorithms in smart transportation networks. Contemporary Readings in Law and Social Justice, 14(1), 73-88. doi: 10.22381/CRLSJ14120225.
  • Peters, M. A. (2022b). A post-Marxist reading of the knowledge economy: open knowledge production, cognitive capitalism, and knowledge socialism. Analysis and Metaphysics, 21, 7-23. doi: 10.22381/am2120221.
  • Poliak, M., Jurecki, R., & Buckner, K. (2022). Autonomous vehicle routing and navigation, mobility simulation and traffic flow prediction tools, and deep learning object detection technology in smart sustainable urban transport systems. Contemporary Readings in Law and Social Justice, 14(1), 25-40. doi: 10.22381/CRLSJ14120222.
  • Qin, Z., & Lu, Y. (2021). Self-organizing manufacturing network: a paradigm towards smart manufacturing in mass personalization. Journal of Manufacturing Systems, 60, 35-47. doi: 10.1016/j.jmsy.2021.04.016
  • Rice, L. (2022). Digital twins of smart cities: spatial data visualization tools, monitoring and sensing technologies, and virtual simulation modeling. Geopolitics, History, and International Relations, 14(1), 26-42. doi: 10.22381/GHIR14120222.
  • Robinson, R. (2022). Digital twin modeling in virtual enterprises and autonomous manufacturing systems: deep learning and neural network algorithms, immersive visualization tools, and cognitive data fusion techniques. Economics, Management, and Financial Markets, 17(2), 52-66. doi: 10.22381/emfm17220223.
  • Rogers, S., & Zvarikova, K. (2021). Big data-driven algorithmic governance in sustainable smart manufacturing: robotic process and cognitive automation technologies. Analysis and Metaphysics, 20, 130-144. doi: 10.22381/am2020219.
  • Sharma, A., Zhang, Z., & Rai, R. (2021). The interpretive model of manufacturing: a theoretical framework and research agenda for machine learning in manufacturing. International Journal of Production Research, 59, 4960-4994. doi: 10.1080/00207543.2021.1930234.
  • Shpak, N., Kulyniak, I., Gvozd, M., Pyrog, O., & Sroka, W. (2021). Shadow economy and its impact on the public administration: aspects of financial and economic security of the country's industry. Administratie si Management Public, 36, 81-101. doi: 10.24818/amp/2021.36-05.
  • Siafara, L. C., Kholerdi, H., Bratukhin, A., Taherinejad, N., & Jantsch, A. (2018). SAMBA - an architecture for adaptive cognitive control of distributed cyberphysical production systems based on its self-awareness. E & i Elektrotechnik und Informationstechnik, 135, 270-277. doi: 10.1007/s00502-018-0614-7.
  • Stone, D., Michalkova, L., & Machova, V. (2022). Machine and deep learning techniques, body sensor networks, and Internet of Things-based smart healthcare systems in COVID-19 remote patient monitoring. American Journal of Medical Research, 9(1), 97-112. doi: 10.22381/ajmr9120227.
  • Valaskova, K., Androniceanu, A-M., Zvarikova, K., & Olah, J. (2021). Bonds between earnings management and corporate financial stability in the context of the competitive ability of enterprises. Journal of Competitiveness, 13(4), 167-184. doi: 10.7441/joc.2021.04.10.
  • Valaskova, K., Nagy, M., Zabojnik, S., & Lăzăroiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. Mathematics, 10(14), 2452. doi: 10.3390/math10142452.
  • Vătămănescu, E.-M., Alexandru, V.-A., Mitan, A., & Dabija, D.-C. (2020). From the deliberate managerial strategy towards international business performance: a psychic distance vs. global mindset approach. Systems Research and Behavioral Science, 37(2), 374-387. doi: 10.1002/sres.2658.
  • Vătămănescu, E.-M., Brătianu, C., Dabija, D.-C., & Popa, S. (2022). Capitalizing online knowledge networks: from individual knowledge acquisition towards organizational achievements. Journal of Knowledge Management. Advance online publication. doi: 10.1108/JKM-04-2022-0273.
  • Watson, R. (2022). Tradeable digital assets, immersive extended reality technologies, and blockchain-based virtual worlds in the metaverse economy. Smart Governance, 1(1), 7-20. doi: 10.22381/sg1120221.
  • Welch, H. (2021). Algorithmically monitoring menstruation, ovulation, and pregnancy by use of period and fertility tracking apps. Journal of Research in Gender Studies, 11(2), 113-125. doi: 10.22381/JRGS11220218.
  • Woo, W-S., Kim, E-J., Jeong, H-I., & Lee, C.-M. (2020). Laser-assisted machining of Ti-6Al-4V fabricated by DED additive manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 559-572. doi: 10.1007/s40684-020-00221-7.
  • Zeba, G., Dabić, M., Čičak, M., Daim, T., & Yalcin, H. (2021). Technology mining: artificial intelligence in manufacturing. Technological Forecasting and Social Change, 171, 120971. doi: 10.1016/j.techfore.2021.120971.
  • Zhao, Y. F., & Xu, X. (2010). Enabling cognitive manufacturing through automated on-machine measurement planning and feedback. Advanced Engineering Informatics, 24, 269-284. doi: 10.1016/j.aei.2010.05.009.
  • Zheng, P., Xia, L., Li, C., Li, X., & Liu, B. (2021). Towards Self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach. Journal of Manufacturing Systems, 61, 16-26. doi: 10.1016/j.jmsy.2021.08.002.
  • Zvarikova, K., Rowland, M., & Krulicky, T. (2021). Sustainable Industry 4.0 wireless networks, smart factory performance, and cognitive automation in cyber-physical system-based manufacturing. Journal of Self-Governance and Management Economics, 9(4), 9-21. doi: 10.22381/jsme9420211.
  • Zvarikova, K., Frajtova Michalikova, K., & Rowland, M. (2022). Retail data measurement tools, cognitive artificial intelligence algorithms, and metaverse live shopping analytics in immersive hyper-connected virtual spaces. Linguistic and Philosophical Investigations, 21, 9-24. doi: 10.22381/lpi2120221.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171658950

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.