Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 17 | nr 4 | 939--967
Tytuł artykułu

Forecasting Volatility during the Outbreak of Russian Invasion of Ukraine : Application to Commodities, Stock Indices, Currencies, and Cryptocurrencies

Treść / Zawartość
Warianty tytułu
Języki publikacji
Research background: The Russian invasion on Ukraine of February 24, 2022 sharply raised the volatility in commodity and financial markets. This had the adverse effect on the accuracy of volatility forecasts. The scale of negative effects of war was, however, market-specific and some markets exhibited a strong tendency to return to usual levels in a short time.
Purpose of the article: We study the volatility shocks caused by the war. Our focus is on the markets highly exposed to the effects of this conflict: the stock, currency, cryptocurrency, gold, wheat and crude oil markets. We evaluate the forecasting accuracy of volatility models during the first stage of the war and compare the scale of forecast deterioration among the examined markets. Our long-term purpose is to analyze the methods that have the potential to mitigate the effect of forecast deterioration under such circumstances. We concentrate on the methods designed to deal with outliers and periods of extreme volatility, but, so far, have not been investigated empirically under the conditions of war.
Methods: We use the robust methods of estimation and a modified Range-GARCH model which is based on opening, low, high and closing prices. We compare them with the standard maximum likelihood method of the classic GARCH model. Moreover, we employ the MCS (Model Confidence Set) procedure to create the set of superior models.
Findings & value added: Analyzing the market specificity, we identify both some common patterns and substantial differences among the markets, which is the first comparison of this type relating to the ongoing conflict. In particular, we discover the individual nature of the cryptocurrency markets, where the reaction to the outbreak of the war was very limited and the accuracy of forecasts remained at the similar level before and after the beginning of the war. Our long-term contribution are the findings about suitability of methods that have the potential to handle the extreme volatility but have not been examined empirically under the conditions of war. We reveal that the Range-GARCH model compares favorably with the standard volatility models, even when the latter are evaluated in a robust way. It gives valuable implication for the future research connected with military conflicts, showing that in such period gains from using more market information outweigh the benefits of using robust estimators. (original abstract)
Słowa kluczowe
Opis fizyczny
  • Nicolaus Copernicus University in Toruń, Poland
  • University of Lodz, Poland
  • Adekoya, O. B., Oliyide, J. A., Yaya, O. S., & Al-Faryan, M. A. S. (2022). Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga. Resources Policy, 77, 102728. doi: 10.1016/j.resourpol.2022.102728.
  • Alam, M. K., Mosab, I. T., Mabruk, B., Sanjeev, K., & Suhaib, A. (2022). The im-pacts of the Russia-Ukraine invasion on global markets and commodities: a dynamic connectedness among G7 and BRIC markets. Journal of Risk and Financial Management, 15(8), 352. doi: 10.3390/jrfm15080352.
  • Alizadeh, S., Brandt, M., & Diebold, F. X. (2002). Range-based estimation of stochastic volatility models. Journal of Finance, 57, 1047-1091. doi: 10.1111/1540-6261.00454.
  • Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: including jump components in the measurement, modelling, and forecasting of return volatility. Review of Economics and Statistics, 89(4), 701-720. doi: 10.1162/rest.89.4.701.
  • Antonakakis, N., Gupta, R., Kollias, C., & Papadamou, S. (2017). Geopolitical risks and the oil-stock nexus over 1899-2016. Finance Research Letters, 23, 165?173. doi: 10.1016/
  • Bauwens, L., & Storti, G. (2009). A component GARCH model with time varying weights. Studies in Nonlinear Dynamics and Econometrics, 13(2), 1. doi: 10.22 02/1558-3708.1512.
  • Bariviera, A. F., & Merediz-Sol?, I. (2021). Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis. Journal of Economic Surveys, 35(2), 377-407. doi: 10.1111/joes.12412.
  • Bollerslev, T. (1986). Generalised autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307-327. doi: 10.1016/0304-4076(86)90063-1.
  • Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, 69(3), 542-547. doi: 10.2307/1925546.
  • Boubaker, S., Goodell, J. W., Pandey, D. K., & Kumari, V. (2022). Heterogeneous impacts of wars on global equity markets: evidence from the invasion of Ukraine. Finance Research Letters, 48, 102934. doi: 10.1016/ 34.
  • Boudt, K., Daníelsson, J., & Laurent, S. (2013). Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting, 29(2), 244-57. doi: 10.1016/j.ijforecast.2012.06.003.
  • Boungou, W., & Yatié, A. (2022). The impact of the Ukraine-Russia war on world stock market returns. Economics Letters, 215, 110516. doi: 10.1016/j.econlet.2022.110516.
  • Brandt, M., & Jones, C. (2006). Volatility forecasting with range-based EGARCH models. Journal of Business and Economic Statistics, 24, 470-486. doi: 10.119 8/073500106000000206.
  • Brune, A., Hens, T., Rieger, M. O., & Wang, M. (2015). The war puzzle: contradictory effects of international conflicts on stock markets. International Review of Economics, 62(1), 1-21. doi: 10.1007/s12232-014-0215-7.
  • Carnero, M. A., Pena, D., & Ruiz, E. (2007). Effects of outliers on the identification and estimation of GARCH models. Journal of Time Series Analysis, 28(4), 471-97. doi: 10.1111/j.1467-9892.2006.00519.x.
  • Carnero, M. A., Pena, D., & Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters, 114(1), 86-90. doi: 10.1016/j.econlet .2011.09.023.
  • Catalán, B., & Trívez, F. J. (2007). Forecasting volatility in GARCH models with additive outliers. Quantitative Finance, 7(6), 591-96. doi: 10.1080/146976806 01116872.
  • Charles, A. (2008). Forecasting volatility with outliers in GARCH models. Journal of Forecasting, 27(7), 551?65. doi: 10.1002/for.1065.
  • Charles, A., & Darné, O. (2005). Outliers and GARCH models in financial data. Economics Letters, 86(3), 347-352. doi: 10.1016/j.econlet.2004.07.019.
  • Charles, A., & Darne, O. (2014). Large shocks in the volatility of the Dow Jones Industrial Average Index: 1928-2013. Journal of Banking and Finance, 43, 188-199. doi: 10.1016/j.jbankfin.2014.03.022.
  • Chen, C. W. S., Gerlach, R., & Lin, E. M. H. (2008). Volatility forecasting using threshold heteroskedastic models of the intra-day range. Computational Statistics and Data Analysis, 52(6), 2990-3010. doi: 10.1016/j.csda.2007.08. 002.
  • Chortane, S. G., & Pandey, D. K. (2022). Does the Russia-Ukraine war lead to currency asymmetries? A US dollar tale. Journal of Economic Asymmetries, 26, e00265. doi: 10.1016/j.jeca.2022.e00265.
  • Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) Model. Journal of Money, Credit and Banking, 37(3), 561-582. doi: 10.1353/mcb.2005.0027.
  • Chou, R. Y., Chou, H. C., & Liu, N. (2015). Range volatility: a review of models and empirical studies. In C. F. Lee & J. C. Lee (Eds.). Handbook of financial econometrics and statistics (pp. 2029-2050). New York: Springer.
  • Choudhry, T. (1997). Stock return volatility and World War II: evidence from GARCH and GARCH-X models. International Journal of Finance and Economics, 2(1), 17-28. doi: 10.1002/(SICI)1099-1158(199701)2:1<17::AID-IJFE36>3.0.CO;2-S.
  • Choudhry, T. (2010). World War II events and the Dow Jones Industrial Index. Journal of Banking and Finance, 34(5), 1022-1031. doi: 10.1016/j.jbankfin.2 009.11.004.
  • Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial asset: a systematic analysis. International Review of Financial Analysis, 62, 18299. doi: 10.1016/j.irfa.2018.09.003.
  • Degiannakis, S., & Livada, A. (2013). Realized volatility or price range: evidence from a discrete simulation of the continuous time diffusion process. Economic Modelling, 30, 212-216. doi: 10.1016/j.econmod.2012.09.027.
  • Fang, Y., & Shao, Z. (2022). The Russia-Ukraine conflict and volatility risk of commodity markets. Finance Research Letters, 50, 103264. doi: 10.1016/
  • Fiszeder, P., & Fałdziński, M. (2019). Improving forecasts with the co-range dynamic conditional correlation model. Journal of Economic Dynamics and Control, 108, 103736. doi: 10.1016/j.jedc.2019.103736.
  • Fiszeder, P., Fałdziński, M., & Molnár, P. (2019). Range-based DCC models for covariance and Value-at-Risk forecasting. Journal of Empirical Finance, 54, 58-76. doi: 10.1016/j.jempfin.2019.08.004.
  • Fiszeder, P., & Perczak, G. (2016). Low and high prices can improve volatility fore-casts during the turmoil period. International Journal of Forecasting, 32(2), 398-410. doi: 10.1016/j.ijforecast.2015.07.003.
  • Floros, C., Gkillas, K., Konstantatos, C., & Tsagkanos, A. (2020). Realized measures to explain volatility changes over time. Journal of Risk and Financial Management, 13(6), 125. doi: 10.3390/jrfm13060125.
  • Franses, P. H., & Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 15(1), 1-9. doi: 10.1016/S0169-2070(98)00053-3.
  • Frey, B. S., & Kucher, M. (2000). World War II as reflected on capital markets. Economics Letters, 69, 187-191. doi: 10.1016/S0165-1765(00)00269-X.
  • Frey, B. S., & Kucher, M. (2001). Wars and markets: how bond values reflect the Second World War. Economica, 68(271), 317-333. doi: 10.1111/1468-0335.00249.
  • Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. Journal of Business, 53(1), 67-78. doi: 10.1086/296072.
  • Gkillas, K., Konstantatos, C., & Siriopoulos, C. (2021). Uncertainty due to infectious diseases and stock-bond correlation. Econometrics, 9(2), 17. doi: 10.3390/econometrics9020017.
  • Grane, A., & Veiga, H. (2010). Wavelet-based detection of outliers in financial time series. Computational Statistics and Data Analysis, 54(11), 2580-2593. doi: 10.1016/j.csda.2009.12.010.
  • Gregory, A. W., & Reeves, J. J. (2010). Estimation and inference in ARCH models in the presence of outliers. Journal of Financial Econometrics, 8(4), 547-549. doi: 10.1093/jjfinec/nbq028.
  • Guidolin, M., & La Ferrara, E. (2010). The economic effects of violent conflict: evidence from asset market reactions. Journal of Peace Research, 47(6), 671-684. doi: 10.1177/0022343310381853.
  • Hanedar, A. Ö., Torun, E., & Hanedar, E. Y. (2015). War-related risks and the Istanbul Bourse on the eve of the First World War. Borsa Istanbul Review, 15(3), 2015, 205-212. doi: 10.1016/j.bir.2015.05.001.
  • Hansen, P., & Lunde, A. (2006). Consistent ranking of volatility models. Journal of Econometrics, 131(1?2), 97-121. doi: 10.1016/j.jeconom.2005.01.005.
  • Hansen, P., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79, 453-497. doi: 10.3982/ECTA5771.
  • Hotta, L. K., & Trucíos, C. (2018). Inference in (M)GARCH models in the presence of additive outliers: specification, estimation, and prediction. In C. Lavor & F. Gomes (Eds.). Advances in mathematics and applications (pp. 179-202). Springer, Cham.
  • Hudson, R., & Urquhart, A. (2015). War and stock markets: the effect of World War Two on the British stock market. International Review of Financial Analysis, 40, 166-177. doi: 10.1016/j.irfa.2015.05.015.
  • Kambouroudis, D. S., McMillan, D. G., & Tsakou, K. (2021). Forecasting realized volatility: the role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility. Journal of Futures Markets, 41, 1618-1639. doi: 10.1002/fut.22241.
  • Kayal, P., & Rohilla, P. (2021). Bitcoin in the economics and finance literature: a survey. SN Business & Economics, 1, 88. doi: 10.1007/s43546-021-00090-5.
  • Kollias, C., Papadamou, S., & Stagiannis, A. (2010). Armed conflicts and capital markets: the case of the Israeli military offensive in the Gaza Strip. Defence and Peace Economics, 21, 357-365. doi: 10.1080/10242694.2010.491712.
  • Li, H., & Hong, Y. (2011). Financial volatility forecasting with range-based auto-regressive volatility model. Finance Research Letters, 8(2), 69-76. doi: 10.1016/
  • Lo, G. D., Marcelin, I., Bassene, T., & Sene, B. (2022). The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities. Finance Research Letters, 50, 103194. doi: 10.1016/
  • Long, H., Demir, E., Będowska-Sójka, B., Zaremba, A., & Shahzad, S. J. H. (2022). Is geopolitical risk priced in the cross-section of cryptocurrency returns? Finance Research Letters, 49, 103131. doi: 10.1016/
  • Lyócsa, S., & Plíhal, T. (2022). Russia's ruble during the onset of the Russian invasion of Ukraine in early 2022: the role of implied volatility and attention. Finance Research Letters, 48, 102995. doi: 10.1016/
  • Lyócsa, S., Plíhal, T., & Výrost, T. (2021a). FX market volatility modelling: can we use low-frequency data? Finance Research Letters, 40, 101776. doi: 10.1016/
  • Lyócsa, S., Todorova, N., & Výrost, T. (2021b). Predicting risk in energy markets: low-frequency data still matter. Applied Energy, 282, 116146. doi: 10.1016/j.apenergy.2020.116146.
  • Mancini, L., & Trojani, F. (2011). Robust value at risk prediction. Journal of Financial Econometrics, 9(2), 281-313. doi: 10.1093/jjfinec/nbq035.
  • Meulemann, M., Uebele, M., & Wilfling, B. (2014). The restoration of the gold standard after the US Civil War: a volatility analysis. Journal of Financial Stability, 12, 37-46. doi: 10.1016/j.jfs.2013.05.001.
  • Mohamad, A. (2022). Safe flight to which haven when Russia invades Ukraine? A 48-hour story. Economics Letters, 216, 110558. doi: 10.1016/j.econlet.20 22.110558.
  • Molnár, P. (2016). High-low range in GARCH models of stock return volatility. Applied Economics, 48(51), 4977-4991. doi: 10.1080/00036846.2016.1170929.
  • Muler, N., & Yohai, V. J. (2008). Robust estimates for GARCH models. Journal of Statistical Planning and Inference, 138(10), 2918-40. doi: 10.1016/j.jspi.2007.11.003.
  • Naimy, V., Montero, J.-M., El Khoury, R., & Maalouf, N. (2020). Market volatility of the three most powerful military countries during their intervention in the Syrian War. Mathematics, 8(5), 834. doi: 10.3390/math8050834.
  • Nelson, D. B., & Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, 10, 229-235. doi: 10.2307/1391681.
  • Park, B. J. (2002). An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting, 21(5), 381-393. doi: 10.1002/for.827.
  • Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53(1), 61-65. doi: 10.1086/296071.
  • Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246-256. doi: 10.1016/j.jeconom.2010.03.034.
  • Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Bergmeir, C., Bessa, R. J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Oliveira, F. L. C., de Baets, S, Dokumentov, A., Fiszeder, P., Franses, P. H., Gilliland, M., Gönül, M. S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D. F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V. R. R., Kang, Y., Koehler, A. B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martinez, A. B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panapakidis, I., Pavía, J. M., Pedio, M., Pedregal, D. J., Pinson, P., Ramos, P., Rapach, D. E., Reade, J. J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L., Spiliotis, E., Syntetos, A. A., Talagala, P. D., Talagala, T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Arenas, J. R. T., Wang, X., Winkler, R. L., Yusupova, A., & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 35(3), 836-47. doi: 10.1016/j.ijforecast.2021.11.001.
  • Reschenhofer, E., Mangat, M. K., & Stark, T. (2020). Volatility forecasts, proxies and loss functions. Journal of Empirical Finance, 59, 133-153. doi: 10.1016/j.jempfin.2020.09.006.
  • Rigobon, R., & Sack, B. (2005). The effects of war risk on US financial markets. Journal of Banking and Finance, 29(7), 1769-1789. doi: 10.1016/j.jbankfin.2004.06.040.
  • Sakata, S., & White, H. (1998). High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica, 66(3), 529. doi: 10.2307/2998574.
  • Schneider, G., & Troeger, V. E. (2006). War and the world economy stock market reactions to international conflicts. Journal of Conflict Resolution, 50(5), 623-645. doi: 10.1177/0022002706290430.
  • Schwert, G. W. (1989). Why does stock market volatility change over time? Journal of Finance, 44, 1115-1153. doi: 10.1111/j.1540-6261.1989.tb02647.x.
  • Trucíos, C. (2019). Forecasting Bitcoin risk measures: a robust approach. International Journal of Forecasting, 35(3), 836-47. doi: 10.1016/j.ijforecast.2019.01.003.
  • Trucíos, C., & Hotta, L. K. (2015). Bootstrap prediction in univariate volatility models with leverage effect. Mathematics and Computers in Simulation, 120, 91-103. doi: 10.1016/j.matcom.2015.07.001.
  • Trucíos, C., Hotta, L. K., & Ruiz, E. (2017). Robust bootstrap forecast densities for GARCH returns and volatilities. Journal of Statistical Computation and Simulation, 87(16), 3152-3174. doi: 10.1080/00949655.2017.1359601.
  • Umar, Z., Polat, O., Choi, S. Y., & Teplova, T. (2022). The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Finance Research Letters, 48, 102976. doi: 10.1016/
  • Wang, Y., Bouri, E., Fareed, Z., & Dai, Y. (2022). Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Finance Research Letters, 49, 103066. doi: 10.1016/
  • Yousaf, I., Patel, R., & Yarovaya, L. (2022). The reaction of G20+ stock markets to the Russia-Ukraine conflict "black-swan" event: evidence from event study approach. Journal of Behavioral and Experimental Finance, 35, 100723. doi: 10.1016/j.jbef.2022.100723.
  • Zhang, Y., Ma, F., & Liao, Y. (2020). Forecasting global equity market volatilities. International Journal of Forecasting, 36(4), 1454-1475. doi: 10.1016/j.ijforec ast.2020.02.007.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.