PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | z. 160 Modernity of Industry and Sciences = Nowoczesność przemysłu i nauki | 25--38
Tytuł artykułu

Identification of Areas for Optimising Marketing Communications Via AI Systems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of this article is to identify areas for optimizing marketing communication via artificial intelligence solutions. Design/methodology/approach: In order to realise the assumptions made, an analysis and evaluation of exemplary implementations of AI systems in marketing communications was carried out. For the purpose of achieving the research objective, it was decided to choose the case study method. As part of the discussion, the considerations on the use of AI undertaken in world literature were analysed, as well as the analysis of three different practical projects. Findings: AI can contribute to the optimisation and personalisation of communication with the customer. Its application generates multifaceted benefits for both sides of the market exchange. Achieving them, however, requires a good understanding of this technology and the precise setting of objectives for its implementation. Research limitations/implications: The article contains a preliminary study. In the future it is planned to conduct additional quantitative and qualitative research. Practical implications: The conclusions of the study can serve to better understand the benefits of using artificial intelligence in communication with the consumer. The results of the research can be used both in market practice and also serve as an inspiration for further studies of this topic. Originality/value: The article reveals the specifics of artificial intelligence in relation to business activities and, in particular, communication with the buyer. The research used examples from business practice. (original abstract)
Twórcy
autor
  • Cracow University of Economic
  • Cracow University of Economic
Bibliografia
  • 1. Arnott, D. (2010). Senior executive information behaviors and decision support. Journal of Decision Systems, 19(4), pp. 465-480. doi: 10.3166/jds.19.165-480.
  • 2. Bajak, M. (2021). Wykorzystanie beaconów w komunikacji marketingowej. Warszawa: PWE.
  • 3. Bajak, M. (2022). Beacons as the Touchpoints on the Customer Journey. Scientific Papers of Silesian University of Technology. Organization and Management Series, 155, pp. 17-29. doi: 10.29119/1641-3466.2022.155.2.
  • 4. Božič, K., Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), pp. 101578. doi: 10.1016/j.jsis.2019.101578.
  • 5. Chen, X., Siau, K. (2020). Business analytics/business intelligence and IT infrastructure: Impact on organizational agility. Journal of Organizational and End User Computing, 32(4), pp. 138-161. doi: 10.4018/JOEUC.2020100107.
  • 6. Cusumano, M.A., Yoffie, D.B., Gawer, A. (2020). The Future of Platforms. MIT Sloan Management Review, 61(3), pp. 46-54.
  • 7. Dornberger, R. (2018). Business Information Systems and Technology 4.0: New Trends in the Age of Digital Change. Cham: Springer.
  • 8. Duan, Y., Edwards, J.S., Dwivedi, Y.K. (2019). Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. doi: 10.1016/j.ijinfomgt.2019.01.021.
  • 9. Ebert, Ch., Duarte, C.H. (2020). Digital Transformation. IEEE Software, 35(4), pp. 16-21. doi: 10.1109/MS.2018.2801537.
  • 10. Eriksson, T., Bigi, A., Bonera, M. (2020). Think with me, or think for me? On the future role of artificial intelligence in marketing strategy formulation. TQM Journal 32(4), pp. 795-814.
  • 11. Ghasemaghaei, M. (2019). Does data analytics use improve firm decision making quality? The role of knowledge sharing and data analytics competency. Decision Support Systems, 120(2), pp. 14-24. doi: 10.1016/j.dss.2019.03.004.
  • 12. Halkias, D., Neubert, M. (2020). Extension of theory in leadership and management studies using the multiple case study design. International Leadership Journal, 12(2), 48-73. doi: 10.2139/ssrn.3586256.
  • 13. IBM (2022). Humana. Available online: https://www.ibm.com/watson/stories/humana.
  • 14. Kietzmann, J., Paschen, J., Treen, E.R. (2018). Artificial Intelligence in Advertising: How Marketers Can Leverage Artificial Intelligence Along the Consumer Journey. Journal of Advertising Research, 58(3), pp. 263-267. doi: 10.2501/JAR-2018-035.
  • 15. Lei, Z., Wang, L. (2020). Construction of organisational system of enterprise knowledge management networking module based on artificial intelligence. Knowledge Management Research & Practice. doi: 10.1080/14778238.2020.1831892.
  • 16. Liu, S., Zhang, Y., Liu, Y., Wang, L., Wang, X. V. (2019). An 'Internet of Things' enabled dynamic optimization method for smart vehicles and logistics tasks. Journal of Cleaner Production, 215, 806-820. doi: 10.1016/j.jclepro.2018.12.254.
  • 17. Lu, Y. (2019). Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analyticsm 6(1), pp. 1-29. doi: 10.1080/ 23270012.2019.1570365.
  • 18. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. Available online: http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.
  • 19. McKinsey & Company (2017). Artificial Intelligence The Next Digital Frontier? Available online: https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/ our%20insights/how%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence-discussion-paper.ashx.
  • 20. McKinsey & Company, Forbes Polska (2017). Rewolucja AI Jak sztuczna inteligencja zmieni biznes w Polsce. Available online: https://www.mckinsey.com/pl/~/media/ McKinsey/Locations/Europe%20and%20Middle%20East/Polska/Raporty/Rewolucja%20AI%20Jak%20sztuczna%20inteligencja%20zmieni%20biznes%20w%20Polsce/Raport-AI_Forbes_PL.pdf.
  • 21. Miles, M., Huberman, A.M., & Saldana, J. (2019). Qualitative Data Analysis: A Methods Sourcebook. Thousand Oaks: SAGE Publications.
  • 22. Miśkiewicz, R. (2019). Industry 4.0 in Poland - Selected Aspects of Its Implementation. Scientific Papers of Silesian University of Technology. Organization and Management Series, 106, pp. 403-413. doi: 10.29119/1641-3466.2019.136.31.
  • 23. Nalchigar, S., Yu, E. (2017). Conceptual modeling for business analytics: A framework and potential benefits. Proceedings of the 2017 IEEE 19th Conference on Business Informatics, Thessaloniki. doi: 10.1109/CBI.2017.63.
  • 24. Naqwi, A. (2021). Artificial Intelligence for Asset Management and Investment: A Strategic Perspective. Hoboken: John Wiley & Sons.
  • 25. Natera (2022). Case Study: Increase Email Engagement Utilizing Send Time Optimization with Seventh Sense & HubSpot. Available online: https://cdn2.hubspot.net/hubfs/529456/ Natera%20Case%20Study.pdf.
  • 26. Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98(10), pp. 254-264. doi: 10.1016/j.cor.2017.07.004.
  • 27. Patel, P., Ali, M.I., Sheth, A. (2018). From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0. IEEE Intelligent Systems, 33(4), pp. 79-86. doi: 10.1109/MIS.2018.043741325.
  • 28. Raisch, S., Krakowski, S. (2021). Artificial Intelligence and Management: The Automation-Augmentation Paradox. Academy of Management Review 46(1). doi: 10.5465/amr.2018.0072.
  • 29. Ransbotham, S., Kiron, D., Gerbert, P., Reeves, M. (2017). Reshaping Business with Artificial Intelligence. Closing the Gap Between Ambition and Action. Available online: https://web-assets.bcg.com/img-src/Reshaping%20Business%20with%20Artificial% 20Intelligence_tcm9-177882.pdf.
  • 30. Rashid, Y., Rashid, A., Warraich, M.A., Sabir, S., Waseem, A. (2019). Case study method: A step-by-step guide for business researchers. International Journal of Qualitative Methods, 18, pp. 1-13. doi: 10.1177/1609406919862424.
  • 31. Romaniuk, R. (2020). Systemy informatyczne jako fundament przedsiębiorstwa 4.0. In: Gregor, B., Kaczorowska-Spychalska, D., (Eds.). Technologie cyfrowe w biznesie (pp. 13-42). Warszawa: PWN.
  • 32. Rutkowski, I. (2020). Inteligentne technologie w marketingu i sprzedaży - zastosowania, obszary i kierunki badań. Marketing i Rynek 27(6), pp. 3-12. doi: 10.33226/1231-7853.2020.6.1.
  • 33. Scopus (2022). Artificial Intelligence. Available online: https://www.scopus.com.
  • 34. Stanford Human-Centered Artificial Intelligence HAI (2019). Artificial Intelligence Index Report. 2019 Annual Report. Available online: https://hai.stanford.edu/sites/default/ files/ai_index_2019_report.pdf.
  • 35. Sujata, J., Aniket, D., Mahasingh, M. (2019). Artificial intelligence tools for enhancing customer experience. International Journal of Recent Technology and Engineering, 8(2S3), pp. 700-706. doi: 10.35940/ijrte.B1130.0782S319.
  • 36. Tadapaneni, N.R. (2019). Artificial Intelligence in Finance and Investments. International Journal of Innovative Research in Science, Engineering and Technology, 9(5), pp. 2792-2795.
  • 37. Vial, G. (2021). Understanding digital transformation. In: A. Hinterhuber, T. Vescovi, F. Checchinato (Eds.), Managing Digital Transformation (pp. 13-66). London: Routledge.
  • 38. Vignesh, M. (2019). Artificial Intelligence Series - AI in Retail Industry with 4 Use Case Studies. Available online: https://www.cronj.com/blog/artificial-intelligence-series-ai-in-retail-industry.
  • 39. Wamba-Taguimdje, S.L., Wamba, S.F., Kamdjoug, J.R.K., Wanko, C.E.T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. doi: 10.1108/BPMJ-10-2019-0411.
  • 40. Warszycki, M. (2019). Wykorzystanie sztucznej inteligencji do predykcji emocji konsumentów. Studia i Prace Kolegium Zarządzania i Finansów. Szkoła Główna Handlowa, 173, pp. 111-121.
  • 41. Wodecki, A. (2018). Sztuczna inteligencja w kreowaniu wartości organizacji. Kraków-Legionowo: edu-Libri.
  • 42. Yang, F., Gu, S. (2021). Industry 4.0, a revolution that requires technology and national strategies. Complex & Intelligent Systems, 7, 1311-1325. doi: 10.1007/s40747-020-00267-9.
  • 43. Yiu, L.D., Yeung, A.C., Jong, A.P. (2020). Business intelligence systems and operational capability: An empirical analysis of high-tech sectors. Industrial Management and Data Systems, 120(6), 1195-1215. doi: 10.1108/IMDS-12-2019-0659.
  • 44. Żabińska, I. (2020). Development opportunities for automation and robotization in Poland. Scientific Papers of Silesian University of Technology. Organization and Management Series, 148, pp. 861-870. doi: 10.29119/1641-3466.2020.148.63.
  • 45. Zhang, Z., Cui, P., Zhu, W. (2020). Deep learning on graphs: a survey. IEEE Transactions on Knowledge and Data Engineering. doi: 10.1109/tkde.2020.2981333.
  • 46. Zhang, C., Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224. doi: 10.1016/j.jii.2021.100224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171659518

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.