Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 15 | nr 4 | 150--164
Tytuł artykułu

Disagreement on Social Media and Stock Trading Volume: the Indonesian context

Warianty tytułu
Języki publikacji
This research intends to test the relationship between disagreements on social media and stock trading volume using the Indonesia Stock Exchange (IDX) as a research object. The Covid-19 pandemic has made the use massively of social media to invest in Indonesia's capital market There has been an increasing number of investors in the IDX. They trade and discuss stocks online. The research question is whether the information on social media has worhted for Indonesian investors. Research on the relationship between social media features and stock market features, especially using trading volume, has never been done in Indonesia. To do this, we tested the influence that the number of posts and disagreements on Telegram social media has on stock trading volume in IDX. The test was done using multivariate regression method. The results show that discussions on social media have a positive and significant effect on stock trading volume, while disagreements do not significantly affect it. (original abstract)
Opis fizyczny
  • Universitas Tarumanagara, Indonesia
  • Universitas Tarumanagara, Indonesia
  • Al-Nasseri, A., Menla Ali, F., & Tucker, A. (2021). Investor Sentiment and the Dispersion of Stock Returns: Evidence Based on the Social Network of Investors. International Review of Financial Analysis.. 78,
  • Audrino, F., Sigrist, F., & Ballinari, D. (2020). The impact of Sentiment and Attention Measures on Stock Market Volatility. International Journal of Forecasting. 36 (2),
  • Barber, B. M., & Odean, T. (2002). Online Investors: Do the Slow Die First? In Review of Financial Studies. 15 (2),
  • Blankespoor, E., deHaan, E., & Zhu, C. (2018). Capital market Effects of Media Synthesis and Dissemination: Evidence from Robo-Journalism. Review of Accounting Studies. 23 (1),
  • Cao, Z., Kilic, O., & Wang, X. (2021). Investor Attention, Divergence of Opinions, and Stock Returns. Journal of Behavioral Finance. 22 (3),
  • Chang, J., Tu, W., Yu, C., & Qin, C. (2021). Assessing Dynamic Qualities of Investor Sentiments for Stock Recommendation. Information Processing and Management. 56 (2),
  • Chen, H., De, P., Hu, Y., & Hwang, B. H. (2014). Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media. Review of Financial Studies. 27 (5),
  • Cookson, J. A., & Niessner, M. (2020). Why Don't We Agree? Evidence from a Social Network of Investors. Journal of Finance. 75 (1),
  • Cookson, J. A., Fos, V., & Niessner, M. (2021). Does Disagreement Facilitate Informed Trading? Evidence from Activist Investors. SSRN Electronic Journal.
  • Daniel, K., Klos, A., & Rottke, S. (2021). The Dynamics of Disagreement. Working Paper NBER.
  • Das, S. R., & Chen, M. Y. (2005). Yahoo! for Amazon: Sentiment Parsing from Small Talk on the Web. SSRN Electronic Journal.
  • Das, S.R., Asís, M. J., & Tufano, P. (2005). Elnformation: A Clinical Study of Investor Discussion and Sentiment. 34 (3), Financial Management.
  • Dewally, M. (2003). Internet Investment Advice: Investing with a Rock of Salt. Financial Analysts Journal. 59 (4),
  • Duz Tan, S., & Tas, O. (2021). Social Media Sentiment in International Stock Returns and Trading Activity. Journal of Behavioral Finance. 22 (2),
  • Fernandez-Perez, A., Gilbert, A., Indriawan, I., & Nguyen, N. H. (2021). COVID-19 Pandemic and Stock Market Response: A Culture Effect. Journal of Behavioral and Experimental Finance. 29,
  • Fromlet, H. (2001). Behavioral Finance-Theory and Practical Application: Systematic Analysis of Departures from the Homo Economicus Paradigm Are Essential for Realistic Financial Research and Analysis. Business Economics. 36 (3), 63-69.
  • Giannini, R., Irvine, P., & Shu, T. (2019). The convergence and divergence of investors' opinions around earnings news: Evidence from a social network. Journal of Financial Markets. 42C,
  • Gibson Brandon, R., Krueger, P., & Schmidt, P. S. (2021). ESG Rating Disagreement and Stock Returns. Financial Analysts Journal. 77 (4),
  • Hasan, R., & Wang, W. (2021). Social Media Visibility, Investor Diversity and Trading Consensus. International Journal of Managerial Finance. 17 (1),
  • Hofstede, G. (1984). Culture's Consequences: International Differences in Work-Related Values. Sage: Beverly Hills.
  • Hofstede, G. (2001). Culture's Consequences: Comparing Values, Behaviours, Institutions, and Organizations Across Nations, 2nd Edition. Sage Publications: Thousand Oak
  • Hu, D., Jones, C. M., Zhang, V., & Zhang, X. (2021). The Rise of Reddit: How Social Media Affects Retail Investors and Short-sellers' Roles in Price Discovery. SSRN Electronic Journal.
  • Huang, D., Li, J., & Wang, L. (2021). Are Disagreements Agreeable? Evidence from Information Aggregation. Journal of Financial Economics. 141 (1),
  • Li, X., Feng, H., Yan, S., & Wang, H. (2021). Dispersion in Analysts' Target Prices and Stock Returns. North American Journal of Economics and Finance. 56 C,
  • Mai, Y. T., Wang, Y. H., Shih, K. H., & Yang, F. J. (2022). Social Media, Internet Sentiment Tracking and Stock Market Volatility. International Journal of Mobile Communications. 20 (3),
  • Mehta, P., Pandya, S., & Kotecha, K. (2021). Harvesting Social Media Sentiment Analysis to Enhance Stock Market Prediction Using Deep Learning. Peer J Computer Science.7: e476,
  • Milgrom, P., & Stokey, N. (1982). Information, Trade and Common Knowledge. Journal of Economic Theory. 26 (1),
  • Miller, E. M. (1977). Risk, uncertainty, and Divergence of Opinion. The Journal of Finance. 32 (4),
  • Rizvi, S. A., Juhro, S. M., & Narayan, P. K. (2021). Understanding Market Reaction to Covid-19 Monetary and Fiscal Stimulus in Major Asean countries. Buletin Ekonomi Moneter Dan Perbankan. 24 (3),
  • Rose, J. M. (2001). The Effects of Multimedia-Induced Affective States on Recall and Decision-Making by Individual Investors. International Journal of Accounting Information Systems. 2 (1),
  • Rose, J. M., Roberts, F. D., & Rose, A. M. (2004). Affective Responses to Financial Data and Multimedia: The Effects of Information Load and Cognitive Load. International Journal of Accounting Information Systems. 35 (2),
  • Sehgal, V., & Song, C. (2007). SOPS: Stock Prediction Using Web Sentiment. Proceedings - IEEE International Conference on Data Mining, ICDM.
  • Shiller, R. J. (2015). Irrational Exuberance: Revised and Expanded Third Edition. Princeton University Press: New Jersey
  • Siikanen, M., Baltakys, K., Kanniainen, J., Vatrapu, R., Mukkamala, R., & Hussain, A. (2018). Facebook Drives Behavior of Passive Households in Stock Markets. Finance Research Letters. 27,
  • Tsuchiya, T. (2021). Profitability of Cryptocurrency Pump and Dump Schemes. Digital Finance. 3 (4),
  • Tumarkin, R., & Whitelaw, R. F. (2001). News Or Noise? Internet Message Board Activity and Stock Prices. Financial Analysts Journal, 57 (3): 41-51.
  • Varian, H. R. (1985). Divergence of Opinion in Complete Markets: A Note. The Journal of Finance. 40 (1),
  • Wang, W., Su, C., & Duxbury, D. (2021). Investor Sentiment and Stock Returns: Global Evidence. Journal of Empirical Finance. 63 C,
  • Xu, Y., Liu, Z., Zhao, J., & Su, C. (2017). Weibo Sentiments and Stock return: A Time-Frequency View. PLoS ONE. 12 (7),
  • Yee, Wong (1989). A Guide To Investment In Stocks & Share. Petaling Jaya, Pelanduk Publications
  • Zhang, Y., & Liu, H. (2021). Stock Market Reactions to Social Media: Evidence from WeChat Recommendations. Physica A: Statistical Mechanics and Its Applications. 562, Issue C,
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.