Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Several bounds of trigonometric-exponential and hyperbolic-expo-nential type for sinc and hyperbolic sinc functions are presented. In an attempt to generalize the results, some known inequalities are sharpened and extended. Hyperbolic versions are also established, along with extensions.(original abstract)
Twórcy
Bibliografia
- Anderson G.D, M.K. Vamanamurthy, and M. Vuorinen, Conformal Invariants, In-equalities and Quasiconformal Maps, John Wiley & Sons, New York, 1997.
- Bagul Y.J. and C. Chesneau, Refined forms of Oppenheim and Cusa-Huygens type inequalities, Acta Comment. Univ. Tartu. Math. 24 (2020), no. 2, 183-194.
- Bagul Y.J., R.M. Dhaigude, M. Kostić, and C. Chesneau, Polynomial-exponential bounds for some trigonometric and hyperbolic functions, Axioms 10 (2021), no. 4, Paper No. 308, 10 pp.
- Chaouchi B., V.E. Fedorov, and M. Kostić, Monotonicity of certain classes of functions related with Cusa-Huygens inequality, Chelyab. Fiz.-Mat. Zh. 6 (2021), no. 3, 31-337.
- Chen X.-D., H. Wang, J. Yu, Z. Cheng, and P. Zhu, New bounds of Sinc function by using a family of exponential functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 16, 17 pp.
- Chesneau C. and Y.J. Bagul, A note on some new bounds for trigonometric functions using infinite products, Malays. J. Math. Sci. 14 (2020), no. 2, 273-283.
- Chouikha A.R., C. Chesneau, and Y.J. Bagul, Some refinements of well-known inequalities involving trigonometric functions, J. Ramanujan Math. Soc. 36 (2021), no. 3, 193-202.
- Gradshteyn I.S., and I.M. Ryzhik, Table of Integrals, Series and Products, Seventh edition, Elsevier/Academic Press, Amsterdam, 2007.
- Iyengar K.S.K., B.S. Madhava Rao, and T.S. Nanjundiah, Some trigonometrical inequalities, Half-Yearly J. Mysore Univ. Sect. B., N.S. 6 (1945), 1-12.
- Klén R., M. Visuri, and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl. 2010, Art. ID 362548, 14 pp.
- Lv Y., G. Wang, and Y. Chu, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012), no. 3, 505-508.
- Malešević B., T. Lutovac, and B. Banjac, One method for proving some classes of exponential analytical inequalities, Filomat 32 (2018), no. 20, 6921-6925.
- Malešević B., and B. Mihailović, A minimax approximant in the theory of analytic inequalities, Appl. Anal. Discrete Math. 15 (2021), no. 2, 486-509.
- Mitrinović D.S., Analytic Inequalities, Springer-Verlag, Berlin, 1970.
- Neuman E. and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), no. 4, 715-723.
- Neuman E. and J. Sándor, Inequalities for hyperbolic functions, Appl. Math. Comput. 218 (2012), no. 18, 9291-9295.
- Qian C., X.-D. Chen, and B. Malesevic, Tighter bounds for the inequalities of Sinc function based on reparameterization, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 29, 38 pp.
- Sándor J., Two applications of the Hadamard integral inequality, Notes Number Theory Discrete Math. 23 (2017), no. 4, 52-55.
- Wu S., and L. Debnath, Wilker-type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012), no. 5, 837-842.
- Z.-H. Yang, New sharp bounds for logarithmic mean and identric mean, J. Inequal. Appl. 2013, 2013:116, 17 pp.
- Yang Z.-H., Refinements of a two-sided inequality for trigonometric functions, J. Math. Inequal. 7 (2013), no. 4, 601-615.
- Yang Z.-H. and Y.-M. Chu, Jordan type inequalities for hyperbolic functions and their applications, J. Funct. Spaces 2015, Art. ID 370979, 4 pp.
- Zhang L. and X. Ma, Some new results of Mitrinović-Cusa's and related inequalities based on the interpolation and approximation method, J. Math. 2021, Art. ID 5595650, 13 pp.
- Zhu L., Generalized Lazarevic's inequality and its applications-Part II, J. Inequal. Appl. 2009, Art. ID 379142, 4 pp.
- Zhu L., Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 81, 17 pp.
- Zhu L. and R. Zhang, New inequalities of Mitrinović-Adamović type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 34, 15 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171662372