Warianty tytułu
Języki publikacji
Abstrakty
We examine the multiplicity of the greatest prime factor in k-full numbers and k-free numbers. We generalize a well-known result on greatest prime factors and obtain formulas related with the Riemann zeta function(original abstract)
Twórcy
autor
- National University of Luján, Argentina
Bibliografia
- Alladi K. and Erdős P. , On an additive arithmetic function, Pacific J. Math. 71 (1977), no. 2, 275-294.
- Apostol T.M., Introduction to Analytic Number Theory, Springer-Verlag, New YorkHeidelberg, 1976.
- Bordellés O. and Tóth L. , Additive arithmetic functions meet the inclusion-exclusion principle, II, to appear in Res. Number Theory. Avaliable at arXiv: 2112.13409.
- Jakimczuk R. and Lalín M., Sums of ω(n) and Ω(n) on the k-free parts and k-full parts of some particular sequences, preprint 2022.
- Jakimczuk R. and Lalín M., The number of prime factors on average in certain integer sequences, J. Integer Seq. 25 (2022), no. 2, Art. 22.2.3, 15 pp.
- Jakimczuk R., A note on sums of greatest (least) prime factors, Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 423-432
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171662454