Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In order to explore the Leonardo sequence, the process of complexification of this sequence is carried out in this work. With this, the Gaussian and octonion numbers of the Leonardo sequence are presented. Also, the recurrence, generating function, Binet's formula, and matrix form of Leonardo's Gaussian and octonion numbers are defined. The development of the Gaussian numbers is performed from the insertion of the imaginary component i in the one-dimensional recurrence of the sequence. Regarding the octonions, the terms of the Leonardo sequence are presented in eight dimensions. Furthermore, the generalizations and inherent properties of Leonardo's Gaussians and octonions are presented.(original abstract)
Słowa kluczowe
Twórcy
- Federal University of Ceará Fortaleza-CE, Brasil
- Federal University of Ceará, Brasil
- Federal University of Ceará, Brasil
- University of Trás-os-Montes and Alto Douro, Portugal
Bibliografia
- Alves F.R.V. and Vieira R.P.M., The Newton fractal's Leonardo sequence study with the Google Colab, Int. Elect. J. Math. Ed. 15 (2020), no. 2, Article No. em0575, 9 pp.
- Alves F.R.V., Vieira R.P.M., and Catarino P.M.M.C., Visualizing the Newtons fractal from the recurring linear sequence with Google Colab: An example of Brazil X Portugal research, Int. Elect. J. Math. Ed. 15 (2020), no. 3, Article No. em0594, 19 pp.
- Catarino P. and Borges A., On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89 (2020), no. 1, 75-86.
- Harman C.J., Complex Fibonacci numbers, Fibonacci Quart. 19 (1981), no. 1, 82-86.
- Karatas A. and Halici S., Horadam octonions, An. Stiinµ. Univ. "Ovidius" Constanµa Ser. Mat. 25 (2017), no. 3, 97-106.
- Keçilioglu O. and Akkus I., The Fibonacci octonions, Adv. Appl. Clifford Algebr. 25 (2015), no. 1, 151-158.
- Shannon A.G., A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (2019), no. 3, 97-101.
- Vieira R.P.M., Alves F.R.V., and Catarino P.M.M.C., Relações bidimensionais e identidades da sequência de Leonardo, Revista Sergipana de Matemática e Educação Matemática 4 (2019), no. 2, 156-173.
- Vieira R.P.M., Alves F.R.V., and P.M.M.C. Catarino, Uma extensão dos octônios de Padovan para inteiros não positivos, C.Q.D. - Revista Eletrônica Paulista de Matemática 19 (2020), Edição Dezembro, 9-16.
- Vieira R.P.M., Mangueira M.C. dos S., Alves F.R.V., and Catarino P.M.M.C., A forma matricial dos números de Leonardo, Ci. e Nat. 42 (2020), 40 yrs. - Anniv. Ed., Article No. e100, 6 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171662476