Warianty tytułu
Języki publikacji
Abstrakty
We propose in this study, a new logarithmic barrier approach to solve linear semidefinite programming problem. We are interested in computation of the direction by Newton's method and of the displacement step using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. This purpose is confirmed by some numerical simulations showing the effectiveness of the algorithm developed in this work, which are presented in the last section of this paper. (original abstract)
Twórcy
autor
- Ferhat Abbas University, Algeria
Bibliografia
- Alizadeh F., Haeberly J.-P.A., Overton M.L., Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results, SIAM J. Optim. 8 (1998), no. 3, 746-768.
- Benterki D., Crouzeix J.-P., Merikhi B., A numerical implementation of an interior point method for semidefinite programming, Pesqui. Oper. 23 (2003), no. 1, 49-59.
- Benterki D., Crouzeix J.-P., Merikhi B., A numerical feasible interior point method for linear semidefinite programs, RAIRO Oper. Res. 41 (2007), no. 1, 49-59.
- Crouzeix J.-P., Merikhi B., A logarithm barrier method for semi-definite programming, RAIRO Oper. Res. 42 (2008), no. 2, 123-139.
- Crouzeix J.-P., Seeger A., New bounds for the extreme values of a finite sample of real numbers, J. Math. Anal. Appl. 197 (1996), no. 2, 411-426.
- Ji J., Potra F.A., Sheng R., On the local convergence of a predictor-corrector method for semidefinite programming, SIAM J. Optim. 10 (1999), no. 1, 195-210.
- Merikhi B., Extension de Quelques Méthodes de Points Intérieurs pour la Programmation Semi-Définie, Thèse de Doctorat, Département de Mathématiques, Université Ferhat Abbas, Sétif, 2006.
- Monteiro R.D.C., Primal-dual path-following algorithms for semidefinite programming, SIAM J. Optim. 7 (1997), no. 3, 663-678.
- Nesterov Y.E., Nemirovskii A.S., Optimization Over Positive Semidefinite Matrices: Mathematical Background and User's Manual, Technical report, Central Economic & Mathematical Institute, USSR Academy of Science, Moscow, 1990.
- Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
- Samia K., Benterki D., A relaxed logarithmic barrier method for semidefinite programming, RAIRO Oper. Res. 49 (2015), no. 3, 555-568.
- Toh K.-C., Some new search directions for primal-dual interior point methods in semidefinite programming, SIAM J. Optim. 11 (2000), no. 1, 223-242.
- Touil I., Benterki D., Yassine A., A feasible primal-dual interior point method for linear semidefinite programming, J. Comput. Appl. Math. 312 (2017), 216-230.
- Wolkowicz H., Styan G.P.H., Bounds for eigenvalues using traces, Linear Algebra Appl. 29 (1980), 471-506.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171662480