PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 23 | nr 4 | 113--128
Tytuł artykułu

Zero-Modified Poisson-Modification of Quasi Lindley Distribution and Its Application

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Poisson-Modification of Quasi Lindley (PMQL) distribution is a newly introduced mixed Poisson distribution for over-dispersed count data. The aim of this article is to introduce the Zero-modified PMQL (ZMPMQL) distribution as an alternative to the PMQL distribution in order to accommodate zero inflation/deflation. The method of obtaining the ZMPMQL distribution jointly with some of its important properties, namely the probability mass and distribution functions, mean, variance, index of dispersion, and quantile function are presented. Furthermore, some of its special cases are discussed. The maximum likelihood (ML) estimation method is used for the unknown parameter estimation. A simulation study is conducted in order to evaluate the asymptotic theory of the ML estimation method and to show the superiority of the ML method over the method of moments estimation. The applicability of the introduced distribution is illustrated by using a real-world data set. (original abstract)
Rocznik
Tom
23
Numer
Strony
113--128
Opis fizyczny
Twórcy
  • Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka; Department of Mathematics and Statistics, University of Jaffna, Sri Lanka
  • Department of Statistics and Computer Science, University of Peradeniya, Peradeniya, Sri Lanka
Bibliografia
  • Albrecht, P., (1984). Laplace Transforms, Mellin Transforms and Mixed Poisson Processes. Scandinavian Actuarial Journal, 11, pp. 58-64.
  • Da Silva, W. B., Ribeiro, A. M. T., Conceicao, K. S., Andrade, M. G., Neto, F. L., (2018). On Zero-Modified Poisson-Sujatha Distribution to Model Overdispersed Count Data. Austrian Journal of Statistics, 47(3), pp. 1-19.
  • Ghitany, M.E., Atieh, B., Nadarajah, S., (2008). Zero-truncated Poisson-Lindley Distribution and Its Application. Mathematics and Computers in Simulation, 79, pp. 279-287. https://doi.org/10.1016/j.matcom.2007.11.021.
  • Greenwood, M., Yule, G. U., (1920). An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83, pp. 255-279. doi: 10.2307/2341080.
  • Grine, R., Zeghdoudi, H., (2017). On Poisson quasi-Lindley distribution and its applications. J. of Modern Applied Statistical Methods, 16, pp. 403-417.
  • Irwin, J., (1975). The Generalized Waring Distribution Parts I, II, III. Journal of the Royal Statistical Society A, 138, 18-31 (Part I), pp. 204-227 (Part II), pp. 374-384 (Part III). doi:10.2307/2345247.
  • Lindsey, J. K., (1995). Modelling Frequency and Count Data, Oxford science publications, Clarendon Press, UK.
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • Sankaran, M., (1970). The discrete Poisson-Lindley distribution. Biometrics, 26, pp. 145- 149. doi:10.2307/2529053.
  • Shanker, R., (2016b). Sujatha Distribution and Its Applications. Statistics in Transition New series, 17, pp. 1-20.
  • Shanker, R., (2016c). The Discrete Poisson-Sujatha Distribution. International Journal of Probability and Statistics, 5, pp. 1-9.
  • Tharshan, R.,Wijekoon, P., (2021). A modification of the Quasi Lindley distribution, Open Journal of Statistics, 11, 369-392. doi:10.4236/ojs.2021.113022.
  • Tharshan, R., Wijekoon, P., (2022). A New Mixed Poisson Distribution for Over-dispersed Count Data: Theory and Applications, Reliability: Theory and Applications, 17, pp. 3351, doi: https://doi.org/10.24412/1932-2321-2022-167-33-51.
  • Xavier, D., Santos-Neto, M., Bourguignon, M., Tomazella, V., (2018). Zero-Modified Poisson-Lindley distribution with applications in zero-inflated and zero-deflated count data, arXiv preprint. arXiv:1712.04088.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171662744

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.