Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | vol. 31, iss. 1 | 69--77
Tytuł artykułu

Points of Interest and Housing Prices

Warianty tytułu
Języki publikacji
Points of Interest (POI) are an inherent element of the urban landscape, and their number and density reflect, among other things, the degree of urbanization and the city's spatial structure. The very presence of POI in the closest vicinity of a residential property may indirectly or directly affect housing value. This paper aims to demonstrate the usefulness of POI density information of different categories in assessing the quality of a property's immediate surroundings. While the mere presence of POIs in the nearest neighborhood may affect real estate prices, the influence of specific categories may not necessarily be positive. Therefore, the study attempted to classify POIs and determine their importance in the price formation process using spatial regression models. The results indicate that a high density of POIs in the immediate area is a stimulant for housing prices. The detailed analysis indicated that only some POI categories might be related to transaction prices, while in certain situations, some POI categories may negatively impact prices. (original abstract)
Opis fizyczny
  • University of Warmia and Mazury in Olsztyn, Poland
  • Anselin, L. (1988). Spatial econometrics: Methods and models. Springer.
  • Anselin, L. (1990). Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science, 30(2), 185-207.
  • Basu, S., & Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in house prices. The Journal of Real Estate Finance and Economics, 17(1), 61-85.
  • Benjamin, J., Guttery, R., & Sirmans, C. (2004). Mass appraisal: An introduction to multiple regression analysis for real estate valuation. Journal of Real Estate Practice and Education, 7(1), 65-77.
  • Bourassa, S., Cantoni, E., & Hoesli, M. (2010). Predicting house prices with spatial dependence: A comparison of alternative methods. Journal of Real Estate Research, 32(2), 139-160.
  • Bowen, W. M., Mikelbank, B. A., & Prestegaard, D. M. (2001). Theoretical and empirical considerations regarding space in hedonic housing price model applications. Growth and Change, 32(4), 466-490.
  • Chau, K. W., & Chin, T. L. (2003). A critical review of literature on the hedonic price model. International Journal for Housing Science and Its Applications, 27(2), 145-165.
  • Chiang, Y. H., Peng, T. C., & Chang, C. O. (2015). The nonlinear effect of convenience stores on residential property prices: A case study of Taipei, Taiwan. Habitat International, 46, 82-90.
  • Cressie, N. A. C. (1993). Statistics for spatial data. John Wiley & Sons, Inc.,
  • D'Acci, L. (2014). Monetary, subjective and quantitative approaches to assess urban quality of life and pleasantness in cities (Hedonic Price, Willingness-to-Pay, Positional Value, Life Satisfaction, Isobenefit Lines). Social Indicators Research, 115(2), 531-559.
  • Hui, E. C. M., Chau, C. K., Pun, L., & Law, M. Y. (2007). Measuring the neighboring and environmental effects on residential property value: Using spatial weighting matrix. Building and Environment, 42(6), 2333-2343.
  • Jang, M., & Kang, C. D. (2015). Retail accessibility and proximity effects on housing prices in Seoul, Korea: A retail type and housing submarket approach. Habitat International, 49, 516-528.
  • Jim, C. Y., & Chen, W. Y. (2010). External effects of neighborhood parks and landscape elements on high-rise residential value. Land Use Policy, 27(2), 662-670.
  • Kiel, K. A., & Zabel, J. E. (2008). Location, location, location: The 3L Approach to house price determination. Journal of Housing Economics, 17(2), 175-190.
  • LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC.,
  • Liao, W. C., & Wang, X. (2012). Hedonic house prices and spatial quantile regression. Journal of Housing Economics, 21(1), 16-27.
  • Lin, D., Allan, A., & Cui, J. (2016). Exploring differences in commuting behaviour among various income groups during polycentric urban development in China: New evidence and its implications. Sustainability, 8, 1188.
  • Liu, X., & Long, Y. (2016). Automated identification and characterisation of parcels with Open Street Map and points of interest. Environment and Planning. B, Planning & Design, 43(2), 341-360.
  • Lu, C., Pang, M., Zhang, Y., Li, H., Lu, C., Tang, X., & Cheng, W. (2020). Mapping urban spatial structure based on POI (Point of Interest) data: A case study of the central city of Lanzhou, China. ISPRS International Journal of Geo-Information, 9(2), 92.
  • Malpezzi, S., Gibb, K., & O'Sullivan, A. (2002). Hedonic Pricing Models: A selective and applied review.
  • Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.,
  • Sirmans, S., Macpherson, D., & Zietz, E. (2005). The Composition of Hedonic Pricing Models. Journal of Real Estate Literature, 13(1), 1-44.
  • Steiniger, S., Poorazizi, M. E., Scott, D. R., Fuentes, C., & Crespo, R. (2016). Can we use open street map POIs for the evaluation of urban accessibility? International Conference on GIScience Short Paper Proceedings, 1.
  • Tang, J., Liu, Z., Wang, Y., Yang, J., & Wang, Q. (2018). Using geographic information and point of interest to estimate missing second-hand housing price of residential area in urban space. 2018 IEEE International Smart Cities Conference (ISC2), 1-8.
  • Tu, Y., Sun, H., &Yu, S. M. (2007). Spatial Autocorrelations and urban housing market segmentation. The Journal of Real Estate Finance and Economics 34(3), 385-406.
  • Wu, H., Jiao, H., Yu, Y., Li, Z., Peng, Z., Liu, L., & Zeng, Z. (2018). Influence factors and regression model of urban housing prices based on internet open access data. Sustainability, 10(5), 1676.
  • Xiao, Y., Chen, X., Li, Q., Yu, X., Chen, J., & Guo, J. (2017). Exploring determinants of housing prices in Beijing: An enhanced hedonic regression with open access POI Data. ISPRS International Journal of Geo-Information, 6(11), 358.
  • Yue, Y., Zhuang, Y., Yeh, A. G. O., Xie, J.-Y., Ma, C.-L., & Li, Q.-Q. (2017). Measurements of POI-based mixed use and their relationships with neighborhood vibrancy. International Journal of Geographical Information Science, 31(4), 658-675.
  • Zhang, X., Zheng, Y., Sun, L., & Dai, Q. (2019). Urban structure, subway system and housing price: Evidence from Beijing and Hangzhou, China. Sustainability, 11(3), 669.
  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.