Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Research background: The increasing water demand together with an unceasing production of wastewater worldwide has resulted in a situation where the scarcity and pollution of water resources are jeopardizing and depleting such a vital asset.
Purpose of the article: In this context, Nature Based Solutions (NBS) such as Vertical Flow Constructed Wetlands (VFCWs) are key because of their capacity of channelling a waste into a resource. However, and notwithstanding their essential role, their financial benefits too often go unnoticed because of missing research that study them from an economic perspective and this article has covered this existing gap. The objective of this research is to analyse the economic consequences of using VFCW against its traditional alternative through a comprehensive economic assessment.
Methods: After doing a Life Cycle Assessment (LCA), a combination of two approaches has been carried out. This research has developed a holistic approach where a Life Cycle Cost Assessment (LCCA) based on a Cost Benefit Analysis (CBA) along with an economic evaluation of cleaning environmental costs have been calculated for two different scenarios. For this monetary analysis, the environmental externalities derived from the use of cleaning the pollution caused by a public water supply and sewerage system and the VFCW have been quantified.
Findings & value added: Results conclude that VFCW apart of being a cost-effective and profitable alternative for an investor, it has also valuable benefits for the society in general because of its meaningful and positive externalities and the high removal cost of the environmental pollutants of the traditional water supply and sewage system both contributing directly to the achievement of Sustainable Development Goals (SDGs). Furthermore, 4/5 environmental impacts derived from the use of traditional alternative pollute more than twice as much as the VFCW does. Lastly, the cleaning costs difference between both alternatives is 1,984,335€. (original abstract)
Purpose of the article: In this context, Nature Based Solutions (NBS) such as Vertical Flow Constructed Wetlands (VFCWs) are key because of their capacity of channelling a waste into a resource. However, and notwithstanding their essential role, their financial benefits too often go unnoticed because of missing research that study them from an economic perspective and this article has covered this existing gap. The objective of this research is to analyse the economic consequences of using VFCW against its traditional alternative through a comprehensive economic assessment.
Methods: After doing a Life Cycle Assessment (LCA), a combination of two approaches has been carried out. This research has developed a holistic approach where a Life Cycle Cost Assessment (LCCA) based on a Cost Benefit Analysis (CBA) along with an economic evaluation of cleaning environmental costs have been calculated for two different scenarios. For this monetary analysis, the environmental externalities derived from the use of cleaning the pollution caused by a public water supply and sewerage system and the VFCW have been quantified.
Findings & value added: Results conclude that VFCW apart of being a cost-effective and profitable alternative for an investor, it has also valuable benefits for the society in general because of its meaningful and positive externalities and the high removal cost of the environmental pollutants of the traditional water supply and sewage system both contributing directly to the achievement of Sustainable Development Goals (SDGs). Furthermore, 4/5 environmental impacts derived from the use of traditional alternative pollute more than twice as much as the VFCW does. Lastly, the cleaning costs difference between both alternatives is 1,984,335€. (original abstract)
Twórcy
autor
- University of Almería, Spain
autor
- Ghent University Campus Kortrijk, Belgium
autor
- Ghent University Campus Kortrijk, Belgium
autor
- University of Almería, Spain
Bibliografia
- Abdelhay, A., & Abunaser, S. G. (2021). Modeling and economic analysis of greywater treatment in rural areas in Jordan using a novel vertical-flow constructed wetland. Environmental Management, 67(3), 477-488. doi: 10.1007/s00267-020-01349-7.
- Abdulfatah, H. K., Stanley, O. I., Nzerem, P., & Jakada, K. (2019). Defining the optimal development strategy to maximize recovery and production rate from an integrated offshore water-flood project. Paper presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, August 2019. doi: 10.2118/198843-MS.
- Agiakloglou, C., & Gkouvakis, M. (2022). Policy implications and welfare analysis under the possibility of default for the Euro zone area. Journal of Economic Asymmetries, 25, e00246. doi: 10.1016/j.jeca.2022.e00246.
- AL-agele, H. A., Nackley, L., & Higgins, C. W. (2021). A pathway for sustainable agriculture. Sustainability, 13(8), 4328. doi: 10.3390/su13084328.
- Arellano-Gonzalez, J., Aghakouchak, A., Levy, M. C., Qin, Y., Burney, J., Davis, S. J., & Moore, F. C. (2021). The adaptive benefits of agricultural water markets in California. Environmental Research Letters, 16(4), 044036. doi: 10.1088/1748-9326/ abde5b.
- Ashu, A. B., & Lee, S. Il. (2021). The effects of climate change on the reuse of agricultural drainage water in irrigation. KSCE Journal of Civil Engineering, 25(3), 1116-1129. doi: 10.1007/s12205-021-0004-2.
- Baggio, G., Qadir, M., & Smakhtin, V. (2021). Freshwater availability status across countries for human and ecosystem needs. Science of the Total Environment, 792, 148230. doi: 10.1016/j.scitotenv.2021.148230.
- Balk, D., Leyk, S., Montgomery, M. R., & Engin, H. (2021). Global harmonization of urbanization measures: Proceed with care. Remote Sensing, 13(24), 1-26. doi: 10.3390/rs13244973.
- Bassi, N., Kumar, S., Kumar, M. D., Van Ermen, S., & Campling, P. (2022). Promoting wastewater treatment in India: Critical questions of economic viability. Water and Environment Journal, 36 (4), 723-736. doi: 10.1111/wej.12810.
- Bhandari, S. N., Schlüter, S., Kuckshinrichs, W., Schlör, H., Adamou, R., & Bhandari, R. (2021). Economic feasibility of agrivoltaic systems in food-energy nexus context: Modelling and a case study in niger. Agronomy, 11(10), 1906. doi: 10.3390/agronomy11101906.
- Bolinches, A., Blanco-Gutiérrez, I., Zubelzu, S., Esteve, P., & Gómez-Ramos, A. (2022). A method for the prioritization of water reuse projects in agriculture irrigation. Agricultural Water Management, 263, 107435. doi: 10.1016/j.agwat.2021.107435.
- Brennan, M., Rondón-Sulbarán, J., Sabogal-Paz, L. P., Fernandez-Ibañez, P., & Galdos-Balzategui, A. (2021). Conceptualising global water challenges: A transdisciplinary approach for understanding different discourses in sustainable development. Journal of Environmental Management, 298, 113361. doi: 10.1016/j.jenvman.2021.113361.
- Bunn, S. E. (2016). Grand challenge for the future of freshwater ecosystems. Frontiers in Environmental Science, 4, 1-4. doi: 10.3389/fenvs.2016.00021.
- Cao, Z., Zhou, L., Gao, Z., Huang, Z., Jiao, X., Zhang, Z., Ma, K., Di, Z., & Bai, Y. (2021). Comprehensive benefits assessment of using recycled concrete aggregates as the substrate in constructed wetland polishing effluent from wastewater treatment plant. Journal of Cleaner Production, 288, 125551. doi: 10.1016/j.jclepro.2020.125551.
- Castellar, J. A. C., Torrens, A., Buttiglieri, G., Monclús, H., Arias, C. A., Carvalho, P. N., Galvao, A., & Comas, J. (2022). Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. Journal of Cleaner Production, 340, 130660. doi: 10.1016/j.jclepro.2022.130660.
- Corbella, C., Puigagut, J., & Garfí, M. (2017). Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Science of the Total Environment, 584-585, 355-362. doi: 10.1016/j.scitotenv.2016.12.186.
- Cui, X., Wang, J., Wang, X., Khan, M. B., Lu, M., Khan, K. Y., Song, Y., He, Z., Yang, X., Yan, B., & Chen, G. (2022). Biochar from constructed wetland biomass waste: A review of its potential and challenges. Chemosphere, 287(P3), 132259. doi: 10.1016/j.chemosphere.2021.132259.
- De Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental prices handbook. Committed to the Environment Delft, 18.7N54.12, 176. Retrieved from https://cedelft.eu/publications/envi ronmental-prices-handbook-eu28-version/ (20.10.2022).
- Declercq, R., Loubier, S., Condom, N., & Molle, B. (2020). Socio-economic interest of treated wastewater reuse in agricultural irrigation and indirect potable water reuse: Clermont-Ferrand and Cannes case studies' cost-benefit analysis. Irrigation and Drainage, 69(S1), 194-208. doi: 10.1002/ird.2205.
- Deng, S., Chen, J., & Chang, J. (2021). Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits. Journal of Cleaner Production, 293, 126156. doi: 10.1016/ j.jclepro.2021.126156.
- Dev, A., Dilly, T. C., Bakhshipour, A. E., Dittmer, U., & Bhallamudi, S. M. (2021). Optimal implementation of wastewater reuse in existing sewerage systems to improve resilience and sustainability in water supply systems. Water, 13(15), 2004. doi: 10.3390/w13152004.
- Di Vaio, A., Trujillo, L., D'Amore, G., & Palladino, R. (2021). Water governance models for meeting sustainable development goals: A structured literature review. Utilities Policy, 72, 101255. doi: 10.1016/j.jup.2021.101255.
- Diao, K. (2021). Towards resilient water supply in centralized control and decentralized execution mode. Aqua Water Infrastructure, Ecosystems and Society, 70(4), 449-466. doi: 10.2166/aqua.2021.162.
- Diaz-Elsayed, N., Rezaei, N., Ndiaye, A., & Zhang, Q. (2020). Trends in the environmental and economic sustainability of wastewaterbased resource recovery: A review. Journal of Cleaner Production, 265, 121598. doi: 10.1016/j.jclepro.2020.121598.
- Dumax, N., & Rozan, A. (2021). Valuation of the environmental benefits induced by a constructed wetland. Wetlands Ecology and Management, 29(6), 809-822. doi: 10.1007/s11273-021-09811-x.
- Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. doi: 10.1016/j.jenvman.2021.112968.
- Estévez, S., González-García, S., Feijoo, G., & Moreira, M. T. (2022). How decentralized treatment can contribute to the symbiosis between environmental protection and resource recovery. Science of the Total Environment, 812, 151485. doi: 10.1016/j.scitotenv.2021.151485.
- Freeman, A. I., Widdowson, S., Murphy, C., & Cooper, D. J. (2019). Economic assessment of aerated constructed treatment wetlands using whole life costing. Water Science and Technology, 80(1), 75-85. doi: 10.2166/wst.2019.246.
- Galvis, A., Jaramillo, M. F., van der Steen, P., & Gijzen, H. J. (2018). Financial aspects of reclaimed wastewater irrigation in three sugarcane production areas in the Upper Cauca river Basin, Colombia. Agricultural Water Management, 209, 102-110. doi: 10.1016/j.agwat.2018.07.019.
- Gattringer, H., Claret, A., Radtke, M., Kisser, J., Zraunig, A., Odriguez-Roda, I., & Buttiglieri, G. (2016). Novel vertical ecosystem for sustainable water treatment and reuse in tourist resorts. International Journal of Sustainable Development and Planning, 11(3), 263-274. doi: 10.2495/SDP-V11-N3-263-274.
- Ghafourian, M., Nika, C. E., Mousavi, A., Mino, E., Al-Salehi, M., & Katsou, E. (2022). Economic impact assessment indicators of circular economy in a decentralised circular water system - case of eco-touristic facility. Science of the Total Environment, 822, 153602. doi: 10.1016/j.scitotenv.2022.153602.
- Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., & Zelm, R. Van. (2009). ReCiPe 2008. Potentials, May 2014, 1-44. Retrieved from http://www.pre-sustainability.com/download/misc/ReCiPe_main_report_final_27-02-2009_web.pdf (20.10.2022).
- Gukelberger, E., Gabriele, B., Hoinkis, J., & Figoli, A. (2018). MBR and integration with renewable energy toward suitable autonomous wastewater treatment. In Current trends and future developments on (bio-) membranes: Renewable energy integrated with membrane operations. Elsevier. doi: 10.1016/B978-0-12-813545-7.00014-3.
- Hasik, V., Anderson, N. E., Collinge, W. O., Thiel, C. L., Khanna, V., Wirick, J., Piacentini, R., Landis, A. E., & Bilec, M. M. (2017). Evaluating the life cycle environmental benefits and trade-offs of water reuse systems for net-zero buildings. Environmental Science and Technology, 51(3), 1110-1119. doi: 10.1021/acs.est.6b03879.
- Hejduková, P., & Kureková, L. (2020). Water scarcity: Regional analyses in the Czech Republic from 2014 to 2018. Oeconomia Copernicana, 11(1), 161-181. doi: 10.24136/oc.2020.007.
- Hristov, J., Barreiro-Hurle, J., Salputra, G., Blanco, M., & Witzke, P. (2021). Reuse of treated water in European agriculture: Potential to address water scarcity under climate change. Agricultural Water Management, 251, 106872. doi: 10.1016/j.agwat .2021.106872.
- Jahne, M. A., Brinkman, N. E., Keely, S. P., Zimmerman, B. D., Wheaton, E. A., & Garland, J. L. (2020). Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Research, 169, 115213. doi: 10.1016/j.watres.2019.115213.
- Karaduić, V., & Đalović, N.. (2021). Profitability determinants of big european banks. Journal of Central Banking Theory and Practice, 10(2), 39-56. doi: 10.2478/ jcbtp-2021-0013.
- Kataki, S., Chatterjee, S., Vairale, M. G., Sharma, S., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an ecotechnology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable Energy Reviews, 148, 111261. doi: 10.1016/j.rser.2021.111261.
- Khalkhali, M., Dilkina, B., & Mo, W. (2021). The role of climate change and decentralization in urban water services: A dynamic energy-water nexus analysis. Water Research, 207, 117830. doi: 10.1016/j.watres.2021.117830.
- Krimpas, N. A., Salamaliki, P. K., & Venetis, I. A. (2021). Factor decomposition of disaggregate inflation: The case of Greece. International Journal of Computational Economics and Econometrics, 11(1), 84-104. doi: 10.1504/IJCEE.2021.111713.
- Kyle, P., Johnson, N., Davies, E., Bijl, D. L., Mouratiadou, I., Bevione, M., Drouet, L., Fujimori, S., Liu, Y., & Hejazi, M. (2016). Setting the system boundaries of "energy for water" for integrated modeling. Environmental Science and Technology, 50(17), 8930-8931. doi: 10.1021/acs.est.6b01066.
- Laitinen, J., Moliis, K., & Surakka, M. (2017). Resource efficient wastewater treatment in a developing area-climate change impacts and economic feasibility. Ecological Engineering, 103, 217-225. doi: 10.1016/j.ecoleng.2017.04.017.
- Lakho, F. H., Qureshi, A., Igodt, W., Le, H. Q., Depuydt, V., Rousseau, D. P. L., & Van Hulle, S. W. H. (2022). Life cycle assessment of two decentralized water treatment systems combining a constructed wetland and a membrane based drinking water production system. Resources, Conservation and Recycling, 178, 106104. doi: 10.1016/j.resconrec.2021.106104.
- Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water scarcity and wastewater reuse standards in Southern Europe: Focus on agriculture. Water, Air, and Soil Pollution, 228(7), 251. doi: 10.1007/s11270-017-3425-2.
- Licciardello, F., Milani, M., Consoli, S., Pappalardo, N., Barbagallo, S., & Cirelli, G. (2018). Wastewater tertiary treatment options to match reuse standards in agriculture. Agricultural Water Management, 210, 232-242. doi: 10.1016/j.agwat.2018.08.001.
- Liu, D., Zou, C., & Xu, M. (2019). Environmental, ecological, and economic benefits of biofuel production using a constructed wetland: A case study in China. International Journal of Environmental Research and Public Health, 16(5), 827. doi: 10.3390/ijerph16050827.
- Liu, Y., Sim, A., & Mauter, M. S. (2021). Energy-optimal siting of decentralized water recycling systems. Environmental Science and Technology, 55(22), 15343- 15350. doi: 10.1021/acs.est.1c04708.
- Loarte-Flores, F., Vasquez-Olivera, Y., Mamani-Macedo, N., Raymundo-Ibañez, C., & Dominguez, F. (2020). Comprehensive strategic risk management system to reduce evaluation times in small-scale mining projects. Advances in Intelligent Systems and Computing, 1152 AISC, 603-609. doi: 10.1007/978-3-030-44267-5_91.
- López-Serrano, M. J., Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., & Román-Sánchez, I. M. (2021). Financial evaluation of the use of reclaimed water in agriculture in Southeastern Spain, a mediterranean region. Agronomy, 11(11), 2218. doi: 10.3390 /agronomy11112218.
- Lourenço, N., & Nunes, L. M. (2021). Life-cycle assessment of decentralized solu- tions for wastewater treatment in small communities. Water Science and Technology, 84(8), 1954-1968. doi: 10.2166/wst.2021.379.
- Lutterbeck, C. A., Kist, L. T., Lopez, D. R., Zerwes, F. V., & Machado, E. L. (2017). Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. Journal of Cleaner Production, 148, 527-536. doi: 10.1016/j.jclepro.2017.02.024.
- Makropoulos, C., Rozos, E., Tsoukalas, I., Plevri, A., Karakatsanis, G., Karagiannidis, L., Makri, E., Lioumis, C., Noutsopoulos, C., Mamais, D., Rippis, C., & Lytras, E. (2018). Sewer-mining: A water reuse option supporting circular economy, public service provision and entrepreneurship. Journal of Environmental Management, 216, 285-298. doi: 10.1016/j.jenvman.2017.07.026.
- Malik, M. F., Awan, M. S., & Malik, W. S. (2022). Determination of inflationary behavior: A comparative analysis. Cogent Economics and Finance, 10(1), 2019360. doi: 10.1080/23322039.2021.2019360.
- Maniam, G., Zakaria, N. A., Leo, C. P., Vassilev, V., Blay, K. B., Behzadian, K., & Poh, P. E. (2022). An assessment of technological development and applications of decentralized water reuse: A critical review and conceptual framework. Wiley Interdisciplinary Reviews: Water, 9(3), 1-31. doi: 10.1002/wat2.1588.
- Maryati, S., Firman, T., & Humaira, A. N. S. (2022). A sustainability assessment of decentralized water supply systems in Bandung City, Indonesia. Utilities Policy, 76, 101373. doi: 10.1016/j.jup.2022.101373.
- Melián-Navarro, A., & Ruiz-Canales, A. (2020). Evaluation in carbon dioxide equivalent and chg emissions for water and energy management in water users associations. A case study in the southeast of spain. Water, 12(12), 3536. doi: 10.3390 /w12123536.
- Mohammed, R. (2022). The impact of crude oil price on food prices in Iraq. OPEC Energy Review, 46(1), 106-122. doi: 10.1111/opec.12225.
- Nuamah, L. A., Li, Y., Pu, Y., Nwankwegu, A. S., Haikuo, Z., Norgbey, E., Banahene, P., & Bofah-Buoh, R. (2020). Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. Journal of Cleaner Production, 269, 122340. doi: 10.1016/j.jclepro.2020.122340.
- Omole, D. O., Jim-George, T., & Akpan, V. E. (2019). Economic analysis of wastewater reuse in Covenant University. Journal of Physics: Conference Series, 1299(1), 012125. doi: 10.1088/1742-6596/1299/1/012125.
- Otter, P., Sattler, W., Grischek, T., Jaskolski, M., Mey, E., Ulmer, N., Grossmann, P., Matthias, F., Malakar, P., Goldmaier, A., Benz, F., & Ndumwa, C. (2020). Economic evaluation of water supply systems operated with solar-driven electrochlorination in rural regions in Nepal, Egypt and Tanzania. Water Research, 187, 116384. doi: 10.1016/j.watres.2020.116384.
- Pahl-Wostl, C. (2019). Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environmental Science and Policy, 92, 356-367. doi: 10.1016/j.envsci.2017.07.017.
- Pahunang, R. R., Buonerba, A., Senatore, V., Oliva, G., Ouda, M., Zarra, T., Muñoz, R., Puig, S., Ballesteros, F. C., Li, C. W., Hasan, S. W., Belgiorno, V., & Naddeo, V. (2021). Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Science of the Total Environment, 792, 148479. doi: 10.1016/j.scitotenv.2021.148479.
- Peñacoba-Antona, L., Senán-Salinas, J., Aguirre-Sierra, A., Letón, P., Salas, J. J., García-Calvo, E., & Esteve-Núñez, A. (2021). Assessing METland® design and performance through LCA: Techno-environmental study with multifunctional unit perspective. Frontiers in Microbiology, 12, 1-14. doi: 10.3389/fmicb.2021.652173.
- Pickering, A. J., Crider, Y., Amin, N., Bauza, V., Unicomb, L., Davis, J., & Luby, S. P. (2015). Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: A randomized controlled trial. PLoS ONE, 10(3), 1-16. doi: 10.1371/journal.pone.0118397.
- Ponce-Robles, L., Masdemont-Hernández, B., Munuera-Pérez T., Pagán-Muñoez, A., Lara-Guillén, A. J., García-García, A. J., Pedrero-Salcedo, F., Nortes-Tortorsa, P. A., Alarcón-Cabañero, J. J. (2020). WWTP effluent quality improvement for agricultural reuse using an autonomous prototype. Water, 12(8), 2240. doi: 10.3390/w12082240.
- Resende, J. D., Nolasco, M. A., & Pacca, S. A. (2019). Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resources, Conservation and Recycling, 148, 170-177. doi: 10.1016/j.resconrec.2019.04.034.
- Ricart, S., & Rico-Amorós, A. M. (2021). Constructed wetlands to face water scarcity and water pollution risks: Learning from farmers' perception in Alicante, Spain. Water, 13(17), 2431. doi: 10.3390/w13172431.
- Rodríguez de Sá Silva, A. C.., Bimbato, A. M., Balestieri, J. A. P., & Vilanova, M. R. N. (2022). Exploring environmental, economic and social aspects of rainwater harvesting systems: A review. Sustainable Cities and Society, 76, 103475. doi: 10.1016/j.scs.2021.103475.
- Sakcharoen, T., Ratanatamskul, C., & Chandrachai, A. (2021). Factors affecting technology selection, techno-economic and environmental sustainability assessment of a novel zero-waste system for food waste and wastewater management. Journal of Cleaner Production, 314, 128103. doi: 10.1016/j.jclepro.2021.128103.
- Sánchez Pérez, J. A., Arzate, S., Soriano-Molina, P., García Sánchez, J. L., Casas López, J. L., & Plaza-Bolaños, P. (2020). Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors. Science of the Total Environment, 736, 139681. doi: 10.1016/j.scitotenv.2020.139681.
- Tociu, C., Ciobotaru, I. E., Maria, C., Déak, G., Ivanov, A. A., Marcu, E., Marinescu, F., Savin, I., & Noor, N. M. (2019). Exhaustive approach to livestock wastewater treatment in irrigation purposes for a better acceptability by the public. AIP Conference Proceedings, 2129, 020066. doi: 10.1063/1.5118074.
- Truchado, P., Gil, M. I., López, C., Garre, A., López-Aragón, R. F., Böhme, K., & Allende, A. (2021). New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality requirements? International Journal of Food Microbiology, 356. 109352. doi: 10.1016/j.ijfoodmicro.2021.109352.
- UNESCO (2021). The United Nations world water development report 2021: Valuing water. Paris: UNESCO.
- UNESCO (2022). Nations world water development report 2022: Groundwater: Making the invisible visible. Paris: UNESCO.
- Vakilifard, N., Anda, M., A. Bahri, P., & Ho, G. (2018). The role of water-energy nexus in optimising water supply systems - review of techniques and approaches. Renewable and Sustainable Energy Reviews, 82, 1424-1432. doi: 10.1016/j. rser.2017.05.125.
- Van de Walle, A., Torfs, E., Gaublomme, D., & Rabaey, K. (2022). In silico assessment of household level closed water cycles: Towards extreme decentralization. Environmental Science and Ecotechnology, 10, 100148. doi: 10.1016/j.ese.2022.100148.
- Vymazal, J., Zhao, Y., & Mander, Ü. (2021). Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 169(June), 106318. doi: 10.1016/j.ecoleng.2021.106318.
- Wang, M., Mohanty, S. K., & Mahendra, S. (2019). Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Accounts of Chemical Research, 52(4), 876-885. doi: 10.1021/acs.accounts.8b00613.
- Wang, X., Müller, C., Elliot, J., Mueller, N. D., Ciais, P., Jägermeyr, J., Gerber, J., Dumas, P., Wang, C., Yang, H., Li, L., Deryng, D., Folberth, C., Liu, W., Makow- ski, D., Olin, S., Pugh, T. A. M., Reddy, A., Schmid, E., Jeong, S., Zhou, F., & Piao, S. (2021). Global irrigation contribution to wheat and maize yield. Nature Communications, 12(1), 1-8. doi: 10.1038/s41467-021-21498-5.
- Weerasooriya, R. R., Liyanage, L. P. K., Rathnappriya, R. H. K., Bandara, W. B. M. A. C., Perera, T. A. N. T., Gunarathna, M. H. J. P., & Jayasinghe, G. Y. (2021). Industrial water conservation by water footprint and sustainable development goals: a review. Environment, Development and Sustainability, 23(9), 12661-12709. doi: 10.1007/s10668-020-01184-0.
- Welivita, I., Willcock, S., Lewis, A., Bundhoo, D., Brewer, T., Cooper, S., Lynch, K., Mekala, S., Mishra, P. P., Venkatesh, K., Vicario, D. R., & Hutchings, P. (2021). Evidence of similarities in ecosystem service flow across the rural-urban spectrum. Land, 10(4), 1-38. doi: 10.3390/land10040430.
- Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594-601. doi: 10.1016/j.biort ech.2014.10.068.
- Yang, H., Chen, J., Yu, L., Li, W., Huang, X., Qin, Q., & Zhu, S. (2022). Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell. Environmental Research, 212, 113249. doi: 10.1016/j.envres.2022.113249.
- Zadeh, S. M., Hunt, D. V. L., Lombardi, D. R., & Rogers, C. D. F. (2013). Shared urban greywater recycling systems: Water resource savings and economic investment. Sustainability, 5(7), 2887-2912. doi: 10.3390/su5072887.
- Zagklis, D. P., & Bampos, G. (2022). Tertiary wastewater treatment technologies: A review of technical, economic, and life cycle aspects. Processes, 10(11), 2304. doi: 10.3390/pr10112304.
- Zhang, H., Tang, W., Wang, W., Yin, W., Liu, H., Ma, X., Zhou, Y., Lei, P., Wei, D., Zhang, L., Liu, C., & Zha, J. (2021). A review on China's constructed wetlands in recent three decades: Application and practice. Journal of Environmental Sciences, 104, 53-68. doi: 10.1016/j.jes.2020.11.032.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171664663