PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | z. nr 72 | 5--25
Tytuł artykułu

Employee Compensation as a Function of the Sectoral Structure of the Economy

Warianty tytułu
Wynagrodzenia pracowników jako funkcja struktury sektorowej gospodarki
Języki publikacji
EN
Abstrakty
EN
Employee compensation is the factor that determines the directions of economic development. Yet, at the same time, the structure of the economy influences employee compensation. Due to the importance of the structure of the economy, the purpose of the paper is to examine the structure factors that influence compensation in the EU Member States in the period 2013-2020. In particular, it investigates the importance of traditional and modern economic structures for employee compensation. In the paper, a multi-level analysis was applied. The research showed that the systematic transformation of the economy towards modern branches in favour of the traditional ones caused an increase of compensation. This is an alternative result in relation to some observations in the subject literature, where it is often emphasized that robotisation and AI cause an increase in unemployment and a decrease in employee compensation. On the other hand, it is impossible to completely replace the traditional sectors. Hence, the most appropriate direction seems to be a gradual increase in efficiency in underdeveloped sectors of the economy without abandoning them entirely. (original abstract)
Wynagrodzenia pracowników są czynnikiem, który wyznacza kierunki rozwoju gospodarczego. Jednocześnie można stwierdzić, że struktura gospodarki wpływa na wynagrodzenia pracowników. Ze względu na znaczenie struktury gospodarki, celem artykułu jest zbadanie czynników struktury wpływających na wynagrodzenia w krajach członkowskich UE w latach 2013-2020. W szczególności zbadano znaczenie tradycyjnych i nowoczesnych struktur gospodarczych dla wynagrodzeń. W pracy zastosowano analizę wielopoziomową. Badania wykazały, że systematyczna transformacja gospodarki w kierunku nowoczesnych gałęzi kosztem tradycyjnych spowodowała wzrost wynagrodzeń. Jest to wynik alternatywny w stosunku do niektórych obserwacji literaturowych, gdzie często podkreśla się, że wykorzystanie robotyzacji i sztucznej inteligencji powoduje wzrost bezrobocia i spadek wynagrodzeń pracowników. Z drugiej strony, całkowite zastąpienie tradycyjnych sektorów jest niemożliwe ze względu na ich znaczenie. Stąd najwłaściwszym kierunkiem wydaje się być stopniowe zwiększanie efektywności w słabo rozwiniętych sektorach gospodarki, bez ich całkowitego porzucania. (abstrakt oryginalny)
Rocznik
Numer
Strony
5--25
Opis fizyczny
Twórcy
  • Koszalin University of Technology, Poland
  • University of Technology in Rzeszów, Poland
  • Rzeszow University of Technology, Poland
  • Koszalin University of Technology, Poland
Bibliografia
  • Abramovitz, M. (1986). Catching up, forging ahead and falling behind. The Journal of Economic History, 46, 385-406.
  • Acemoglu, D., Restrepo, P. (2018a). Artificial Intelligence, automation and work. NBER Working Paper, 24196, 1-43. DOI: 10.3386/w24196.
  • Acemoglu, D., Restrepo, P. (2018b). The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. American Economic Review, 108(6), 1488-1542. DOI: 10.1257/aer.20160696.
  • Acemoglu, D., Restrepo, P. (2020). Robots and Jobs: Evidence from US Labor Markets. Journal of Political Economy, 128(6), 2188-2244. DOI: 10.1086/705716.
  • Ahmad, N., Naveed, A., Naz, A. (2019). A hierarchical analysis of structural change and labour productivity convergence across regions, countries and industries within the EU. Labour & Industry, 29(2), 181-198. DOI: 10.1080/10301763.2019.1593090.
  • Arnold, J.M., Wörgötter, A. (2011). Structural reforms and the benefits of the enlarged EU internal market: still much to be gained. Applied Economics Letters, 18(13), 1231- 1235. DOI: 10.1080/13504851.2010.532096.
  • Asonitou, S., Kavoura, A. (2019). Accounting education, technology and entrepreneurship: Current trends and future outlook. The Malopolska School of Economics in Tarnow Research Papers Collection, 44(4), 65-78. DOI: 10.25944/znmwse.2019.04.6578.
  • Atkinson, A.B. (2009). Economics as a Moral Science. Economica, 76, 791-804. DOI: 10.1111/j.1468-0335.2009.00788.x.
  • Azorin, J.D.B., del Mar Sanchez de la Vega, M. (2015). Human capital effects on labour productivity in EU regions. International Review of Applied Economics, 47(45), 4814-4828. DOI: 10.1080/00036846.2015.1037434.
  • Berg, A., Buffie, E.F., Zanna, L.F. (2018). Should we fear the robot revolution? (the correct answer is yes). Journal of Monetary Economics, 97, 117-148. DOI: 10.5089/9781484300831.001.
  • Bernard, A.B., Jones, C.I. (1996). Productivity and convergence across US states and industries. Empirical Economics, 21(1), 113-135.
  • Bivens, J., Mishel, L. (2015). Understanding the Historic Divergence between Productivity and a Typical Worker's Pay: Why It Matters and Why It's Real. Economic Policy Institute Briefing Paper, 406, 1-31.
  • Bryk, A.S., Raudenbush, S.W. (1992). Hierarchical Linear Models. New York: Sage Newbury Park, CA.
  • Cai, W. (2015). Structural change accounting with labour market distortions. Journal of Economic Dynamics & Control, 57, 54-64. DOI: 10.1016/j.jedc.2015.05.006.
  • Calvo-Sotomayor, I., Laka, J.P., Aguado, R. (2019). Workforce ageing and labour productivity in Europe. Sustainability, 11, 5851. DOI: 10.3390/su11205851.
  • Ciarli, T., Valente, M. (2016). The complex interactions between economic growth and market concentration in a model of structural change. Structural Change and Economic Dynamics, 38, 38-54. DOI: 10.1016/j.strueco.2016.04.006.
  • Chen, M.Y., Hu, M.L. (2020). A study on the impact of technological innovation on China's labor market - A case study of artificial intelligence technology (in Chinese). New Finance, 8, 25-33.
  • Cho, J., Kim, J. (2018). Identifying Factors Reinforcing Robotization: Interactive Forces of Employment, Working Hour and Wage. Sustainability, 10(2), 490. DOI: 10.3390/ su10020490.
  • Choudhry, M.T., Marelli, E., Signorelli, M. (2016). Age dependency and labour productivity divergence. International Review of Applied Economics, 48(50), 4823-4845. DOI: 10.1080/00036846.2016.1167823.
  • Compagnucci, F., Gentili, A., Valentini, E., Gallegati, M. (2019). Robotization and labour dislocation in the manufacturing sectors of OECD countries: a panel VAR approach. Applied Economics, 51(57), 6127-6138. DOI: 10.1080/00036846.2019.1659499.
  • Conti, A.M., Guglielminetti, E., Riggi, M. (2019). Labour productivity and the wageless recovery. Temi di discussione Working Papers, 1257, 1-59.
  • Cörvers, F. (1997). The impact of human capital on labour productivity in manufacturing sectors of the European Union. International Review of Applied Economics, 29, 975- 987. DOI: 10.1080/000368497326372.
  • Cristea, M., Noja, G.G., Danacica, D.E., Stefea, P. (2020). Population ageing, labour productivity and economic welfare in the European Union. Economic Research - Ekonomska Istrazivanja, 33(1), 1354-1376. DOI: 10.1080/1331677X.2020.1748507.
  • Cséfalvay, Z. (2020). Robotization in Central and Eastern Europe: catching up or dependence? European Planning Studies, 28(8), 1534-1553. DOI: 10.1080/09654313.2019.1694647.
  • Csordas, S. (2017). Commodity exports and labour productivity in the long run. Applied Economics Letters, 25(6), 362-365. DOI: 10.1080/13504851.2017.1324195.
  • Dagli, I., Ozbay, F. (2021). Job and wage polarization in the European Union and compensation mechanisms for the effects of innovation. International Akdeniz Scientific Research and Innovation Congress. Congress Book, 245-247.
  • Egger, P., Pfaffermayr, M. (2001). A note on labour productivity and foreign inward direct investment. Applied Economics Letters, 8, 229-232. DOI: 10.1080/135048501750103917.
  • El-Horbaty, Y.S., Hanafy, E.M. (2018). Some Estimation Methods and Their Assessment in Multilevel Models: A Review. Biostatistics and Biometrics, 5(3), 555-662. DOI: 10.19080/BBOAJ.2018.04.555662.
  • Feyrer, J. (2007). Demographics and Productivity. The Review of Economics and Statistics, 89(1), 100-109.
  • Filippetti, A., Peyrache, A. (2013). Is the Convergence Party Over? Labour Productivity and the Technology Gap in Europe. Journal of Common Market Studies, 51(6), 1006- 1022. DOI: 10.1111/jcms.12066.
  • Filippetti, A., Peyrache, A. (2015). Labour Productivity and Technology Gap in European Regions: A Conditional Frontier Approach. Regional Studies, 49(4), 532-554. DOI: 10.1080/00343404.2013.799768.
  • Fortune, J.N. (1987). Some determinants of labour productivity. International Review of Applied Economics, 19(6), 839-843. DOI: 10.1080/00036848700000114.
  • Fuentes-Castro, D. (2012). Labour productivity and compensation of employees in Europe. Applied Economics Letters, 19(7), 689-693. DOI: 10.1080/13504851.2011.595674.
  • Gajewski, P., Kutan, A.M. (2018). Determinants and economic effects of new firm creation: evidence from Polish regions. Eastern European Economics, 56(3), 201-222. DOI: 10.1080/00128775.2018.1442226.
  • Goldstein, H. (1986). Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least-Squares. Biometrika, 73(1), 43-56. DOI: 10.1093/biomet/73.1.43.
  • Goldstein, H. (1995). Multilevel Statistical Models. London: Institute of Education.
  • Goldstein, H., Cuttance, P.F. (1988). A note on national assessment and school comparisons. Journal of Educational Policy, 3(2), 97-202.
  • Gries, T., Naudé, W. (2008). Entrepreneurship and structural economic transformation. Research Paper UNU-WIDER, 62, 1-45.
  • Grishnova, O., Cherkasov, A., Brintseva, O. (2019). Transition to a new economy: transformation trends in the field of income and salary functions. Business Perspectives, 17(2), 18-31. DOI: 10.21511/ppm.17(2).2019.02.
  • Gurgul, H., Lach, Ł. (2015). Key sectors in the post-communist CEE economies: What does the transition data say? Communist and Post-Communist Studies, 48(1), 15-32. DOI: 10.1016/j.postcomstud.2014.12.001.
  • Hagsten, E. (2016). Broadband connected employees and labour productivity: a comparative analysis of 14 European countries based on distributed Microdata access. Economics of Innovation and New Technology, 25(6), 613-629. DOI: 10.1080/10438599.2015.1105547.
  • Hox, J.J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.
  • Hui, W., Jiang, W. (2020). Artificial intelligence labor employment and labor income share: Review and prospect (in Chinese). Journal of Beijing University of Technology (Social Sciences Edition), 20, 77-86.
  • Ingason, A. (2013). Labour flexibility and its effects on labour productivity growth. M.Sc. Thesis: Tu Delft.
  • Ioannou, L.G., Mantzios, K., Tsoutsoubi, L., Panagiotaki, Z., Kapnia, A.K., Ciuha, U., Nybo, L., Flouris, A.D., Mekjavic, I.B. (2021). Effect of a Simulated Heat Wave on Physiological Strain and Labour Productivity. International Journal of Environmental Research and Public Health, 18(6), 3011. DOI: 10.3390/ijerph18063011.
  • Kelley, A.C., Schmidt, R.M. (2005). Evolution of Recent Economic-Demographic Modeling: A Synthesis. Journal of Population Economics, 18, 275-300. DOI: 10.1007/s00148-005-0222-9.
  • Krugman, P. (1994). The Age of Diminishing Expectations. Cambridge, Massachusetts: MIT Press.
  • Kumar, A. (2018). Methods and Materials for Smart Manufacturing: Additive Manufacturing, Internet of Things, Flexible Sensors and Soft Robotics. Manufacturing Letters, 15, 122- 125. DOI: 10.1016/j.mfglet.2017.12.014.
  • Lew, G. (2017). The importance of customer lifetime value in determining their profitability. The Business and Management Review, 8(4), 24-30.
  • Lew, G., Pacana, A., Kulpa, W. (2017a). The concept of customer cost accounting. Journal of Business & Retail Management Research, 11(3), 124-129.
  • Lindquist, M.A., Spicer, J., Asllani, I., Wager, T.D. (2012). Estimating and Testing Variance Components in a Multilevel GIM. Neurolmage, 59, 490-501. DOI: 10.1016/j. neuroimage.2011.07.077.
  • Makarona, E., Kavoura, A. (2019). Redesigning the Ivory Tower: academic entrepreneurship as a new calling supporting economic growth. The Malopolska School of Economics in Tarnow Research Papers Collection, 42, 15-26. DOI: 10.25944/znmwse.2019.02.1526.
  • Mass, J., Hox, J.J. (2003). The Influence of Violations of Assumptions on Multilevel Parameter Estimates and Their Standard Errors. Computational Statistics & Data Analysis, 46, 427-440. DOI: 10.1016/j.csda.2003.08.006.
  • Mihai, I., Jivan, A. (2014). A Comparative Analysis of Productivity Measurements for Five European Countries. Journal of International Business and Economics, 2(2), 33-60.
  • Milanez, A. (2020). Workforce Ageing and Labour Productivity Dynamics. Our Economy, 66(3), 1-13. DOI: 10.2478/ngoe-2020-0013.
  • Mitchell, W., Muysken, J., Van Veen, T. (2006). Growth and Cohesion in the European Union: The Impact of Macroeconomic Policy. Cheltenham: Edward Elgar.
  • Neffke, F., Hartog, M., Boschma, R., Henning, M. (2018). Agents of structural change: the role of firms and entrepreneurs in regional diversification. Economic Geography, 94(1), 23-48. DOI: 10.1080/00130095.2017.1391691.
  • Nuttall, L., Goldstein, H., Prosser, R., Rasbash, J. (1989). Differential school effectiveness. International Journal of Educational Research, 13(7), 769-776. DOI: 10.1016/0883- 0355(89)90027-X.
  • OECD. (2001). Measuring Productivity. Measurement of aggregate and industry-level productivity growth. OECD Manual. Paris: OECD.
  • Pan, D.D. (2019). A study on the effect of artificial intelligence on employment polarization (in Chinese). Modern Economic Research, 12, 25-31.
  • Pasimeni, P. (2018). The Relation between Productivity and Compensation in Europe. European Economy - Discussion Paper 079.
  • Piscitello, L., Rabbiosi, L. (2005). The impact of inward FDI on local companies' labour productivity: evidence from the Italian case. International Journal of the Economics of Business, 12(1), 35-51. DOI: 10.1080/1357151042000323120.
  • Polyzos, S., Arabatzis, G. (2006). Labour Productivity of the Agricultural Sector in Greece: Determinant Factors and Interregional Differences Analysis. NEW MEDIT, 1, 58-65.
  • Porter, M.E. (1990). The Competitive Advantage of Nations. New York: Free Press.
  • Rao, C.R. (1971). Estimation of variance and covariance components - MINQUE theory. Journal of Multivariate Analysis, 1(3), 257-275. DOI: 10.1016/0047-259X(71)90001-7.
  • Roberts, B.M., Thompson, S. (2009). Firm turnover, restructuring and labour productivity in transition: the case of Poland. International Review of Applied Economics, 41, 1127-1136. DOI: 10.1080/00036840601019208.
  • Rodrik, D. (2012). Unconditional Convergence in Manufacturing. The Quarterly Journal of Economics, 128, 165-204.
  • Rojko, K., Erman, N., Jelovac, D. (2020). Impacts of the Transformation to Industry 4.0 in the Manufacturing Sector: The Case of the U.S. Organizacija, 53(4), 287-305. DOI: 10.2478/orga-2020-0019.
  • Sala, H., Silva, J.I. (2011). Labour Productivity and Vocational Training: Evidence from Europe. IZA Discussion Paper, 6171, 1-22.
  • Sarel, M. (1995). Demographic Dynamics and the Empirics of Economic Growth. IMF Staff Papers, 42(2), 398-410.
  • Searle, S.R., Casella, G., McCulloch, C.E. (1992). Variance Components. New York, USA: JohnWiley and Sons.
  • Stocker, A., Gerold, S., Hinterberger, F., Berwald, A., Soleille, S., Morgan, V.A., Zoupanidou, E. (2015). The Interaction of Resource and Labour Productivity. Sustainable Europe Research Institute (SERI) and bio by Deloitte.
  • Turner, L., Boulhol, H. (2011). Recent trends and structural breaks in the US and EU15 labor productivity growth. International Review of Applied Economics, 43(30), 4769-4784. DOI: 10.1080/00036846.2010.498356.
  • Weisskopf, T.E. (1987). The effect of unemployment on labour productivity: an international comparative analysis. International Review of Applied Economics, 1(2), 127-151. DOI: 10.1080/758528894.
  • Woltjer, G., van Galen, M., Logatcheva, K. (2019). Industrial Innovation, Labour Productivity, Sales and Employment. International Journal of the Economics of Business, 28(1), 89-113. DOI: 10.1080/13571516.2019.1695448.
  • Vermeulen, B., Pyka, A., Saviotti, P. (2020). Robots, Structural Change, and Employment: Future Scenarios. In: K.F. Zimmermann (ed.), Handbook of Labor, Human Resources and Population Economics (pp. 2-35). Springer Nature Switzerland AG. DOI: 10.1007/978- 3-319-57365-6_9-2.
  • Vu, K.M. (2017). Structural change and economic growth: empirical evidence and policy insights from Asian economies. Structural Change and Economic Dynamics, 41, 64-77. DOI: 10.1016/j.strueco.2017.04.002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171664751

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.