PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 14 | nr 1 | 169--212
Tytuł artykułu

Adoption Factors in Digital Lending Services Offered by Fintech Lenders

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: Traditional financial institutions are facing new competitors - FinTech lenders. The development of these entities and their services depends on many factors, including the level of their acceptance and use by potential and/or current customers. This acceptance determines the ability to create desired financial results and defines the set of FinTech lenders' activities and also their environment aimed at shaping the offer which meets their consumers' expectations. The limited number of studies addressing the identification and assessment of the impact exerted by the adoption factors of lending services offered by FinTech lenders and the lack of such analyzes relating to these decisions made by consumers from Central and Eastern Europe argue for the need to conduct such research.
Purpose of the article: Identify factors driving consumers' adoption of digital lending services offered by FinTech lenders in Poland.
Methods: Critical analysis of the source literature, descriptive and comparative analysis, diagnostic survey, econometric methods (PCA, SEM used in the TAM). Empirical data come from the surveys carried out in May 2022 using the CAWI method and covering a representative sample of 1,000 Poles.
Findings & value added: The study identified factors driving consumers' adoption of digital lending services, including perceived trust, risk, usefulness and financial health. It has been proven that the perceived ease of use and innovation do not represent the statistically significant constructs influencing the accepted adoption attitudes. The adopted research model shows a considerable power to explain the intention of using digital loans. The article is the first scientific study of this type discussing the identification of adoption factors for loan services offered by FinTech lenders operating on the Central and Eastern European market. The presented example of Poland being the leader in this dynamically developing market provides the background for conducting international comparative studies in the future. (original abstract)
Rocznik
Tom
14
Numer
Strony
169--212
Opis fizyczny
Twórcy
autor
  • Wroclaw University of Economics and Business, Poland
  • Wroclaw University of Economics and Business, Poland
Bibliografia
  • Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa'deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022). Continued intention to use of M-banking in Jordan by integrating UTAUT, TPB, TAM and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 120. doi: 10.3390/joitmc8030120.
  • Agarwal, S., & Chua, Y. H. (2020). FinTech and household finance: a review of the empirical literature. China Finance Review International, 10(4), 361-376. doi: 10.1108/CFRI-03-2020-0024.
  • Ajzen, I. (1993). Attitude theory and the attitude-behavior relation. In D. Krebs & P. Schmidt (Eds.). New directions in attitude measurement (pp. 41-57). Berlin: Walter de Gruyter.
  • Akdim, K., Casaló, L. V., & Flavián, C. (2022). The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. Journal of Retailing and Consumer Services, 66, 102888. doi: 10.1016/j.jretconser.2021.102888.
  • Alalwan, A., Dwivedi, Y., Rana, N., & Williams, M. (2016). Consumer adoption of mobile banking in Jordan. Journal of Enterprise Information Management, 29(1), 118-139. doi: 10.1108/JEIM-04-2015-0035.
  • Ali, M., Raza, S. A., Khamis, B., Puah, C. H., & Amin, H. (2021). How perceived risk, benefit and trust determine user Fintech adoption: A new dimension for Islamic finance. Foresight, 23(4), 403-420. doi: 10.1108/FS-09-2020-0095.
  • Altin Gumussoy, C., Kaya, A., & Ozlu, E. (2018). Determinants of mobile banking use: An extended TAM with perceived risk, mobility access, compatibility, perceived self-efficacy and subjective norms. In F. Calisir & H. C. Akdag (Eds.). Industrial engineering in the Industry 4.0 Era (pp. 225-238). Springer. doi: 10.1007/978-3-319-71225-3_20.
  • Anand, S., Mishra, K., Verma, V., & Taruna, T. (2021). Financial literacy as a mediator of personal financial health during COVID-19: A structural equation modelling approach. Emerald Open Research. Advance online publication. doi: 10.35241/emeraldopenres.13735.2.
  • Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. doi: 10.1037/0033-2909.103.3.411.
  • Aye, T. (2021). Adoption of Fintech and policy recommendations: The case for digital lending platform in Myanmar. Singapore: National University of Singapore. Retrieved from https://scholarbank.nus.edu.sg/handle/10635/192617 (2.07.2022).
  • Balcázar, J. J. M., & Rivas, Á. E. L. (2021). Determining factors of the intention to adopt Fintech services by micro and small business owners from Chiclayo, Peru. Journal of Business, Universidad Del Pacífico (Lima, Peru), 13(2), 19-43. doi: 10.21678/jb.2021.1650.
  • Bao, Z., & Huang, D. (2021). Shadow banking in a crisis: Evidence from FinTech during COVID-19. Journal of Financial and Quantitative Analysis, 56(7), 2320-2355. doi: 10.1017/S0022109021000430.
  • Bauer, R. A. (1960). Consumer behaviour as risk taking. In R. S. Hancock (Ed.). Dynamic marketing for a changing world. Proceedings of the 43rd. conference of the American Marketing Association (pp. 389-398). Chicago American Marketing Association.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606. doi: 10.1037/0033-2909.88.3.588.
  • Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of fintechs: Credit scoring using digital footprints. Review of Financial Studies, 33(7), 2845-2897. doi: 10.1093/rfs/hhz099.
  • Berg, T., Fuster, A., & Puri, M. (2022). Fintech lending. Annual Review of Financial Economics, 14, 187-207. doi: 10.1146/annurev-financial-101521-112042.
  • Bilan, Y., Rubanov, P., Vasylieva, T., & Lyeonov, S. (2019). The influence of industry 4.0 on financial services: Determinants of alternative finance development. Polish Journal of Management Studies, 19(1), 70-93. doi: 10.17512/pjms.2019.19.1.06.
  • BIS (2018). Sound practices: Implications of fintech developments for banks and bank supervisors. Bank for International Settlements. Retrieved from https://www.bis.org/bcbs/publ/d431.pdf (10.08.2022).
  • Brainard, L. (2016). The opportunities and challenges of fintech. Conference on Financial Innovation at the Board of Governors of the Federal Reserve System, Washington, D.C. Retrieved from https://www.federalreserve.gov/newsevents /speech/brainard20161202a.pdf (20.07.2022).
  • Buchak, G., Matvos, G., Piskorski, T., & Seru, A. (2018). Fintech, regulatory arbitrage, and the rise of shadow banks. Journal of Financial Economics, 130(3), 453- 483. doi: 10.1016/j.jfineco.2018.03.011.
  • Caviggioli, F., Lamberti, L., Landoni, P., & Meola, P. (2020). Technology adoption news and corporate reputation: Sentiment analysis about the introduction of Bitcoin. Journal of Product & Brand Management, 29(7), 877-897. doi: 10.1108/JPBM-03-2018-1774.
  • Chakiso, C. B. (2019). Factors affecting attitudes towards adoption of mobile banking: Users and non-users perspectives. EMAJ: Emerging Markets Journal, 9(1), 54-62. doi: 10.5195/emaj.2019.167.
  • Chan, R., Troshani, I., Hill, S. R., & Hoffmann, A. (2022). Towards an understanding of consumers' FinTech adoption: The case of open banking. International Journal of Bank Marketing, 40(4), 886-917. doi: 10.1108/IJBM-08-2021-0397.
  • Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77(4), 511- 535. doi: 10.1016/S0022-4359(01)00056-2.
  • Chuang, L. M., Liu, C. C., & Kao, H. K. (2016). The adoption of fintech service: TAM perspective. International Journal of Management and Administrative Sciences, 3(7), 1-15.
  • Contreras Pinochet, L. H., Diogo, G. T., Lopes, E. L., Herrero, E., & Bueno, R. L. P. (2019). Propensity of contracting loans services from FinTech's in Brazil. International Journal of Bank Marketing, 37(5), 1190-1214. doi: 10.1108/IJBM-07-2018-0174.
  • Cornelli, G., Frost, J., Gambacorta, L., Rau, P. R., Wardrop, R., & Ziegler, T. (2023). Fintech and big tech credit: Drivers of the growth of digital lending. Journal of Banking & Finance, 148, 106742. doi: 10.1016/j.jbankfin.2022.106742.
  • D'Acunto, F., & Rossi, A. G. (2022). Regressive mortgage credit redistribution in the post-crisis era. Review of Financial Studies, 35(1), 482-525. doi: 10.1093/rfs/hha b008.
  • Davis, F. D. (1985). A technology acceptance model for empirically testing. New end-user information systems: Theory and results. Cambridge, MA: MIT Press.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008.
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22, 1111-1132. doi: 10.1111/j.1559-1816.1992.tb00945.x.
  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
  • Di Maggio, M., & Yao, V. (2021). Fintech borrowers: Lax screening or cream-skimming? Review of Financial Studies, 34(10), 4565-4618. doi: 10.1093/rfs/hhaa142.
  • European Bank Authority (2022). Final report on response to the non-bank lending request from the CfA on digital finance. Retrieved from https://www.eba.eur opa.eu/eba-provides-its-advice-eu-commission-non-bank-lending (15.12.2022).
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-computer Studies, 59(4), 451-474. doi: 10.1016/S1071-5819(03)00111-3.
  • Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Contemporary Sociology, 6(2), 244-245. doi: 10.2307/2065853.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi: 10.2307/3151312.
  • Fuster, A., Plosser, M., Schnabl, P., & Vickery, J. (2019). The role of technology in mortgage lending. Review of Financial Studies, 32(5), 1854-1899. doi: 10.1093/rfs/hhz018.
  • Gimpel, H., Rau, D., & Röglinger, M. (2018). Understanding FinTech start-ups - a taxonomy of consumer-oriented service offerings. Electronic Markets, 28(3), 245-264. doi: 10.1007/s12525-017-0275-0.
  • Gopal, M., & Schnabl, P. (2022). The rise of finance companies and fintech lenders in small business lending. Review of Financial Studies, hhac034. doi: 10.1093/rfs/hhac034.
  • Haenlein, M., & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283-297. doi: 10.1207/s15328031us0304_4.
  • Hair J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. doi: 10.1108/EBR-10-2013-0128.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.
  • Hair, J., Anderson, R. E., Tatham, R. L., & William, C. B. (1995). Multivariate data analysis with readings. New Jersey: Prentice-Hall, Inc.
  • Hair, J., Black W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Englewood Cliffs, New Jersey: Prentice Hall.
  • Hair, J., Sarstedt, M., Ringle, C., & Mena, J. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40, 414-433. doi: 10.1007/s11747-011-0261-6.
  • Hamarat, Ç., & Broby, D. (2022). Regulatory constraint and small business lending: Do innovative peer-to-peer lenders have an advantage? Financial Innovation, 8(1), 1-25. doi: 10.1186/s40854-022-00377-y.
  • Hasan, R., Ashfaq, M., & Shao, L. (2021). Evaluating drivers of fintech adoption in the Netherlands. Global Business Review. Advance online publication. doi: 10.1177/09721509211027402.
  • Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption intention of fintech services for bank users: An empirical examination with an extended technology acceptance model. Symmetry, 11(3), 340. doi: 10.3390/sym11030340.
  • Joo, S. (2008). Personal financial wellness. In Handbook of consumer finance research (pp. 21-33). New York: Springer.
  • Kaji, S. (2021). An overview of Fintech. In S. Kaji, T. Nakatsuma & M. Fukuhara (Eds.). The economics of Fintech (pp. 1-16). Singapore: Springer. doi: 10.1007/978-981-33-4913-1_1.
  • Keen, P., Ballance, G., Chan, S., & Schrump, S. (1999). Electronic commerce relationships: Trust by design. New Jersey: Prentice Hall PTR.
  • Khatri, A., Gupta, N., & Parashar, A. (2020). Application of technology acceptance model (TAM) in fintech services. International Journal of Management (IJM), 11(12), 3520-3548. doi: 10.34218/IJM.11.12.2020.328.
  • Khedmatgozar, H. R., & Shahnazi, A. (2018). The role of dimensions of perceived risk in adoption of corporate internet banking by customers in Iran. Electronic Commerce Research, 18(2), 389-412. doi: 10.1007/s10660-017-9253-z.
  • Li, B., Hanna, S. D., & Kim, K. T. (2020). Who uses mobile payments: Fintech potential in users and non-users. Journal of Financial Counseling and Planning, 31(1), 83-100. doi: 10.1891/JFCP-18-00083.
  • Liébana-Cabanillas, F., Marinkovic, V., de Luna, I. R., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: a hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129(C), 117-130. doi: 10.1016/j.techfore.2017.12.015.
  • Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F. (2017). Intention to use new mobile payment systems: A comparative analysis of SMS and NFC payments. Economic Research-Ekonomska Istraživanja, 30(1), 892-910. doi: 10.1080/1331677X.2017.1305784.
  • Lim, K. H., Sia, C. L., Lee, M. K., & Benbasat, I. (2006). Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266. doi: 10.2753/MIS0742-1222230210.
  • Liu, Y., Zhang, Y., Zhang, Y., & Xiao, H. (2022). Small business owners' Fintech credit in crises: Theory and evidence from farmers under the COVID-19. Pacific-Basin Finance Journal, 71, 101692. doi: 10.1016/j.pacfin.2021.101692.
  • Lowry, P. B., & Gaskin J. (2014), Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi: 10.1109/TPC.2014.2312452.
  • Lu, J., Yao, J. E., & Yu, C. S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. Journal of Strategic Information Systems, 14(3), 245-268. doi: 10.1016/j.jsis.2005.07.003.
  • Luna, I. R., Cabanillas, F. L., Fernandez, J. S., & Leiva, F. (2018). Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied. Technological Forecasting & Social Change, 146(C), 931-944. doi: 10.1016/j.techfore.2018.09.018.
  • Marakarkandy, B., Yajnik, N., & Dasgupta, C. (2017). Enabling internet banking adoption: An empirical examination with an augmented technology acceptance model (TAM). Journal of Enterprise Information Management, 30(2), 263-294. doi: 10.1108/JEIM-10-2015-0094.
  • Marcoulides, G. A., Chin, W. W., & Saunders, C. (2009). A critical look at partial least squares modeling. MIS Quarterly, 33(1), 171-175. doi: 10.2307/20650283.
  • Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734. doi: 10.5465/ amr.1995.9508080335.
  • Morgan, P. J., & Trinh, L. Q. (2020). Fintech and financial literacy in Viet Nam. ADBI Working Paper Series, 1154. Retrieved from http://hdl.handle.net/10419/238511 (04.08.2022).
  • Munoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. Spanish Journal of Marketing-ESIC, 21(1), 25-38. doi: 10.1016/j.sjme.2016.12.001.
  • Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International Review of Financial Analysis, 81(C), 102103. doi: 10.1016/j.irfa.2022.102103.
  • Nakashima, T. (2018). Creating credit by making use of mobility with FinTech and IoT. IATSS Research, 42(2), 61-66. doi: 10.1016/j.iatssr.2018.06.001.
  • Nanggala, A. Y. A. (2020). Use of fintech for payment: Approach to technology acceptance model modified. Journal of Contemporary Information Technology, Management, and Accounting, 1(1), 1-8. doi: 10.5281/zenodo.5527891.
  • Nathan, R. J., Setiawan, B., & Quynh, M. N. (2022). Fintech and financial health in Vietnam during the COVID-19 pandemic: Indepth descriptive analysis. Journal of Risk and Financial Management, 15(3), 125. doi: 10.3390/jrfm15030125.
  • Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and Research in Education, 7(2), 133-144. doi: 10.1177/1477878509104318.
  • Nkwe, N., & Cohen, J. (2017). The effects of intrinsic, extrinsic, hedonic, and utilitarian motivations on is usage: An updated meta-analytic investigation. AMCIS 2017 - America's conference on information systems: A tradition of innovation, 2017-August. Retrieved from https://core.ac.uk/download/pdf/301371683.pdf (15.12.2022).
  • Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. doi: 10.1016/j.chb.2016.03.030.
  • Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134. doi: 10.1080/10864415.2003.11044275.
  • Peter, J., & Ryan, M. (1976). An investigation of perceived risk at the brand level. Journal of Marketing Research, 13(2), 184-188. doi: 10.2307/3150856.
  • Polasik, M., & Kotkowski, R. (2022). The open banking adoption among consumers in Europe: The role of privacy, trust, and digital financial inclusion. SSRN. doi: 10.2139/ssrn.4105648.
  • Polish Map of Lendtech (2021). LendTech Foundation. Retrieved from https://www.lendtech.pl/projekty-fundacji/polska-mapa-lendtech-2021/ (10.08.2022).
  • Putranto, B. D., & Sobari, N. (2021). Predicting intention of using Fintech lending to bank users in Indonesia. In 18th international symposium on management (INSY-MA 2021), advances in economics, business and management research (pp. 206-211). Atlantis Press. doi: 10.2991/aebmr.k.210628.034.
  • Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research. New York: Routledge.
  • Roh, T., Yang, Y. S., Xiao, S., & Park, B. I. (2022). What makes consumers trust and adopt fintech? An empirical investigation in China. Electronic Commerce Research. Advance online publication. doi: 10.1007/s10660-021-09527-3.
  • Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. doi: 10.1006/ceps.1999.1020.
  • Ryu, H.-S. (2018). What makes users willing or hesitant to use Fintech?: The moderating effect of user type. Industrial Management & Data Systems, 118(3), 541-569. doi: 10.1108/IMDS-07-2017-0325.
  • Salisbury, W. D., Chin, W. W., Gopal, A., & Newsted, P. R. (2002). Better theory through measurement-developing a scale to capture consensus on appropriation. Information Systems Research, 13(1), 91-103. doi: 10.1287/isre.13.1.91.93.
  • Setiawan, B., Nugraha, D. P., Irawan, A., Nathan, R. J., & Zoltan, Z. (2021). User innovativeness and fintech adoption in Indonesia. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 188. doi: 10.3390/joitmc7030188.
  • Shankar, A., & Datta, B. (2018). Factors affecting mobile payment adoption intention: An Indian perspective. Global Business Review, 19(3), 72-89. doi: 10.1177/097 2150918757870.
  • Shook, C. L., Ketchen Jr, D. J., Hult, G. T. M., & Kacmar, K. M. (2004). An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25(4), 397-404. doi: 10.1002/smj.385.
  • Singh, S., Sahni, M. M., & Kovid, R. K. (2020). What drives FinTech adoption? A multi-method evaluation using an adapted technology acceptance model. Management Decision, 58(8), 1675-1697. doi: 10.1108/MD-09-2019-1318.
  • Solarz, M., & Adamek, J. (2022). Determinants of digital financial exclusion as a barrier to the adoption of mobile banking services in Poland. Economics and Law, 21(2), 503-525. doi: 10.12775/eip.2022.028.
  • Soleimani, M. (2022). Buyers' trust and mistrust in e-commerce platforms: A synthesizing literature review. Information Systems and e-Business Management, 20, 57- 78. doi: 10.1007/s10257-021-00545-0.
  • Souiden, N., Ladhari, R., & Chaouali, W. (2021). Mobile banking adoption: A systematic review. International Journal of Bank Marketing, 39(2), 214-241. doi: 10.110 8/IJBM-04-2020-0182.
  • Stewart, H., & Jürjens, J. (2018). Data security and consumer trust in FinTech innovation in Germany. Information & Computer Security, 26(1), 109-128. doi: 10.1108/ICS-06-2017-0039.
  • Suh, B., & Han, I. (2002). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications, 1(3-4), 247-263. doi: 10.1016/S1567-4223(02)00017-0.
  • Tanda, A., & Schena, C. (2019). FinTech, BigTech and banks: Digitalisation and its impact on banking business models. Springer. doi: 10.1007/978-3-030-22426-4.
  • Tang, H. (2019). Peer-to-peer lenders versus banks: Substitutes or complements?. Review of Financial Studies, 32(5), 1900-1938. doi: 10.1093/rfs/hhy137.
  • Thibaut, J. W., & Kelley H.H. (1959). The social psychology of groups. New York: Wiley.
  • Tiwari, P., Tiwari, S. K., & Gupta, A. (2021). Examining the impact of customers' awareness, risk and trust in m-banking adoption. FIIB Business Review, 10(4), 413-423. doi: 10.1177/23197145211019924.
  • Tun-Pin, C., Keng-Soon, W. C., Yen-San, Y., Pui-Yee, C., Hong-Leong, J. T., & Shwu-Shing, N. (2019). An adoption of fintech service in Malaysia. South East Asia Journal of Contemporary Business, 18(5), 134-147.
  • Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 695-704. doi: 10.2307/25148660.
  • Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. doi: 10.1111/j.1540-5915.2008.00192.x.
  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi: 10.1287/mnsc.46.2.186.11926.
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi: 10.2307/30036540.
  • Wen, C., Prybutok, V. R., & Xu, C. (2011). An integrated model for customer online repurchase intention. Journal of Computer Information Systems, 52(1), 14-23. doi: 10.1080/08874417.2011.11645518.
  • Xia, H., Lu, D., Lin, B., Nord, J. H., & Zhang, J. Z. (2022). Trust in Fintech: Risk, governance, and continuance intention. Journal of Computer Information Systems. Advance online publication. doi: 10.1080/08874417.2022.2093295.
  • Xie, J., Ye, L., Huang, W., & Ye, M. (2021). Understanding FinTech platform adoption: Impacts of perceived value and perceived risk. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1893-1911. doi: 10.3390/jtaer16050106.
  • Yoshino, N., Morgan, P. J., & Long, T. Q. (2020). Financial literacy and fintech adoption in Japan. Asian Development Bank Institute Working Paper, 1095.
  • Zhang, T., Lu, C., & Kizildag, M. (2018). Banking "on-the-go": Examining consumers' adoption of mobile banking services. International Journal of Quality and Service Sciences, 10(3), 279-295. doi: 10.1108/IJQSS-07-2017-0067.
  • Ziegler, T., Shneor, R., Wenzlaff, K., Suresh, K., de Camargo Paes, F. F., Mammadova, L., Wanga, C., Kekre, N., Mutinda, S., Wang, B. W., Closs, C. L., Zhang, B., Forbes, H., Soki, E., Alam, N., & Knaup, C. (2021). The 2nd global alternative finance market benchmarking report, June 2021. Cambridge Centre for Alternative Finance. Retrieved from https://www.jbs.cam.ac.uk/wp-content/uploads/2021/06/ccaf-2021-06-report-2nd-global-alternative-finance-benchmarking-study-report.pdf (15.07.2022).
  • ZPF (2021). The lending institutions sector in Poland. Gdańsk: ZPF.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171664791

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.