PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 14 | nr 1 | 253--293
Tytuł artykułu

Bankruptcy Prediction in Tthe Post-Pandemic Period : a Case Study of Visegrad Group Countries

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: Effective monitoring of financial health is essential in the financial management of enterprises. Early studies to predict corporate bankruptcy were published at the beginning of the last century. The prediction models were developed with a significant delay even among the Visegrad group countries.
Purpose of the article: The primary aim of this study is to create a model for predicting bankruptcy based on the financial information of 20,693 enterprises of all sectors that operated in the Visegrad group countries during the post-pandemic period (2020-2021) and identify significant predictors of bankruptcy. To reduce potential losses to shareholders, investors, and business partners brought on by the financial distress of enterprises, it is possible to use multiple discriminant analysis to build individual prediction models for each Visegrad group country and a complex model for the entire Visegrad group.
Methods: A bankruptcy prediction model is developed using multiple discriminant analysis. Based on this model, prosperity is assessed using selected corporate financial indicators, which are assigned weights such that the difference between the average value calculated in the group of prosperous and non-prosperous enterprises is as large as possible.
Findings & value added: The created models based on 6-14 financial indicators were developed using different predictor combinations and coefficients. For all Visegrad group countries, the best variable with the best discriminating power was the total indebtedness ratio, which was included in each developed model. These findings can be used also in other Central European countries where the economic development is similar to the analyzed countries. However, sufficient discriminant ability is required for the model to be used in practice, especially in the post-pandemic period, when the financial health and stability of enterprises is threatened by macroeconomic development and the performance and prediction ability of current bankruptcy prediction models may have decreased. Based on the results, the developed models have an overall discriminant ability greater than 88%, which may be relevant for academicians to conduct further empirical studies in this field. (original abstract)
Rocznik
Tom
14
Numer
Strony
253--293
Opis fizyczny
Twórcy
  • University of Zilina, Slovakia
  • University of Zilina, Slovakia
  • University of Information Technology and Management in Rzeszów, Rzeszów, Poland
Bibliografia
  • Alaminos, D., del Castillo, A., & Fernandez, M.A. (2016). A global model for bankruptcy prediction. Plos One, 11(11), e0166693. doi: 10.1371/journal.pone.0166693.
  • Al-Kassar, T.A., & Soileau, J. S. (2014). Financial performance evaluation and bankruptcy prediction (failure). Arab Economic and Business Journal, 9(2), 147-155. doi: 10.1016/j.aebj.2014.05.010.
  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609. doi: 10.2307/2978933.
  • Altman, E. I., & Narayanan, P. (1997). An international survey of business failure classification models. Financial Markets, Institutions & Instruments, 6(2), 1-57. doi: 10.1111/1468-0416.00010.
  • Altman, E., I. (1983). Corporate financial distress: A complete guide to predicting, avoiding, and dealing with bankruptcy. Wiley.
  • Amendola, A., Giordano, F., Parrella, M. L., & Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. doi: 10.1002/asmb.2240.
  • Appenzeller, D., & Szarzec, K. (2004). Forecasting the bankruptcy risk of Polish public companies. Rynek Terminowy, 1, 120-28.
  • Balina, R., Idasz-Balina, M., & Achsani, N. A. (2021). Predicting insolvency of the construction companies in the creditworthiness assessment process-empirical evidence from Poland. Journal of Risk and Financial Management, 14(10). doi: 10.33 90/jrfm14100453.
  • Bateni, L., & Asghari, F. (2020). Bankruptcy prediction using logit and genetic algorithm models: A comparative analysis. Computational Economics, 55(1), 335-348. doi: 10.1007/s10614-016-9590-3.
  • Bărbuță-Mișu N., & Madaleno, M. (2020). Assessment of bankruptcy risk of large companies: European countries evolution analysis. Journal of Risk and Financial Management, 13(3), 58. doi: 10.3390/jrfm13030058.
  • Bauer, J., & Agarwal, V. (2014). Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test. Journal of Banking & Finance, 40, 432-442. doi: 10.1016/j.jbankfin.2013.12.013.
  • Bauer, P., & Endresz, M. (2016). Modelling bankruptcy using Hungarian firm-level data. Retrieved from https://www.mnb.hu/letoltes/mnb-op-122-final.pdf.
  • Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. doi: 10.2307/2490171.
  • Becchetti, L., & Sierra, J. (2003). Bankruptcy risk and productive efficiency in manufacturing firms. Journal of Banking & Finance, 27(11), 2099-2120. doi: 10.1016/S0378-4266(02)00319-9.
  • Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, 33, 1-42.
  • Bilderbeek, J. (1979). Empirical-study of the predictive ability of financial ratios in the Netherlands. Zeitschrift fur Betriebswirtschaft, 49(5), 388-407.
  • Black, F., & Scholes, M. (2019). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654. doi: 10.1086/260062.
  • Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), 1-25. doi: 10.2307/2490525.
  • Boda, M., & Uradnicek, V. (2019). Predicting financial distress of Slovak agricultural enterprises. Ekonomicky casopis, 67(4), 426-452.
  • Boratynska, K., & Grzegorzewska, E. (2018). Bankruptcy prediction in the agribusiness sector: Lessons from quantitative and qualitative approaches. Journal of Business Research, 89, 175-181. doi: 10.1016/j.jbusres.2018.01.028.
  • Bragoli, D., Ferretti, C., Ganugi, P., Marseguerra, G., Mezzogori, D., & Zammori, F. (2022). Machine-learning models for bankruptcy prediction: Do industrial variables matter? Spatial Economic Analysis, 17(2), 156-177. doi: 10.1080/17421772. 2021.1977377.
  • Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia. Transformations in Business & Economics, 15(1), 93-114.
  • Cegarra-Navarro, J. G., Bratianu, C., Martinez-Martinez, A., Vatamanescu, E. M., & Dabija, D. C. (2023). Creating civic and public engagement by a proper balance between emotional, rational, and spiritual knowledge. Journal of Knowledge Management. Advance online publication. doi: 10.1108/JKM-07-2022-0532.
  • Chen, H. J., Huang, S. Y., & Lin, C. S. (2009). Alternative diagnosis of corporate bankruptcy: A neuro fuzzy approach. Expert Systems with Applications, 36(4), 7710-7720. doi: 10.1016/j.eswa.2008.09.023.
  • Chijoriga, M. M. (2011). Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model. International Journal of Emerging Markets, 6(2), 132-147. doi: 10.1108/17468801111119498.
  • Chrastinova, Z. (1998). Methods of economic creditworthiness evaluation and prediction of financial situation of agricultural holdings. Bratislava: VUEPP.
  • Daniel, T. (1968). Discriminant analysis for the prediction of business failures. University of Alabama.
  • Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. doi: 10.2307/2490225.
  • Delina, R., & Packova, M. (2013). Prediction bankruptcy models validation in Slovak business environment. E & M Ekonomie a management, 16(3), 101-113.
  • Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513. doi: 10.1016/0377-2217(95)00070-4.
  • Dimitrova, M., Treapat, L. M., & Tulaykova, I. (2021). Value at Risk as a tool for economic-managerial decision-making in the process of trading in the financial market. Ekonomicko-manazerske spektrum, 15(2), 13-26. doi: 10.26552/ems.2021.2.13-26.
  • Dorgai, K., Fenyves, V., & Suto, D. (2016). Analysis of commercial enterprises' solvency by means of different bankruptcy models. Gradus, 3(1), 341-349.
  • Durana, P., Michalkova, L., Privara, A., Marousek, J., & Tumpach, M. (2021). Does the life cycle affect earnings management and bankruptcy? Oeconomia Copernicana, 12(2), 425-461. doi: 10.24136/oc.2021.015.
  • Durana, P., Valaskova, K., Blazek, R., & Palo, J. (2022). Metamorphoses of earnings in the transport sector of the V4 region. Mathematics, 10(8), 1204. doi: 10.3390/math10081204.
  • Dvoracek, J., & Sousedikova, R. (2006). Applying discriminate analysis to predict prospects of corporate activities. Acta Montanistica Slovaca, 4, 283-286.
  • Dvoracek, J., Sousedikova, R., & Domaracka, L. (2008). Industrial enterprises bankruptcy forecasting. Metalurgija, 47(1), 33-36.
  • Dvoracek, J., Sousedikova, R., Repka, M., Domaracka, L., Bartak, P., & Bartosikova, M. (2012). Choosing a method for predicting economic performance of companies. Metalurgija, 51(4), 525-528.
  • Dwyer, M. (1992). A comparison of statistical techniques and artificial neural network models in corporate bankruptcy prediction. University of Wisconsin.
  • Earl, M. J., & Marais, D. (1982). Predicting corporate failure in the UK using discriminant analysis. Accounting and Business Research.
  • Erdogan, B. E. (2013). Prediction of bankruptcy using support vector machines: An application to bank bankruptcy. Journal of Statistical Computation and Simulation, 83(8), 1543-1555. doi: 10.1080/00949655.2012.666550.
  • Fitzpatrik, P. J. (1932). A comparison of ratios of successful industrial enterprises with those of failed firm. Certified Public Accountant, 6, 727-731.
  • Gavurova, B., Janke, F., Packova, M., & Pridavok, M. (2017). Analysis of impact of using the trend variables on bankruptcy prediction models performance. Ekonomicky casopis, 65(4), 370-383.
  • Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability, 12(10), 3954. doi: 10.3390/su12103954.
  • Grice, J. S., & Dugan, M. T. (2001). The limitations of bankruptcy prediction models: Some cautions for the researcher. Review of Quantitative Finance and Accounting, 17(2), 151-166. doi: 10.1023/A:1017973604789.
  • Grice, J. S., & Ingram, R. W. (2001). Tests of the generalizability of Altman's bankruptcy prediction model. Journal of Business Research, 54, 53-61. doi: 10.1016/S0 148-2963(00)00126-0.
  • Guan, Q. (1993). Development of optimal network structures for back-propagation-trained neural networks. University of Nebraska.
  • Gulka, M. (2016). The prediction model of financial distress of enterprises operating in conditions of SR. Biatec, 24(6), 5-10.
  • Gurcik, L. (2002). G-index-the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48, 373-378. doi: 10.17221/5338-AGRICECON.
  • Hajdu, O., & Virag, M. (2001). A Hungarian model for predicting financial bankruptcy. Society and Economy in Central and Eastern Europe, 23(1/2), 28-46. doi: 10.2307/41468499.
  • Hamrol, M., Czajka, B., & Piechocki, M. (2004). Enterprise bankruptcy-discriminant analysis model. Przegląd Organizacji, 6, 35-39.
  • Hertina, D., & Dari, F. W. (2022). Comparative analysis of financial distress models in predicting bankruptcy during Covid-19 pandemic. Jurnal Penelitian Ilmu Ekonomi, 12(4), 272-282. doi: 10.30741/wiga.v12i4.900.
  • Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5-34. doi: 10.1023/B:RAST.0000013627.90884.b7.
  • Hiong, H. K., Jalil, M. F., & Seng, A. T. H. (2021). Estimation and prediction of financial distress: Non-financial firms in Bursa Malaysia. Journal of Asian Finance, Economics and Business, 8(8), 1-12. doi: 10.13106/jafeb.2021.vol8.no8.0001.
  • Horvathova, J., & Mokrisova, M. (2014). Determination of business performance applying modern methods of business performance evaluation. Economics, Management, Innovation, 6(3), 46-60.
  • Horvathova, J., & Mokrisova, M. (2018). Risk of bankruptcy, its determinants and models. Risks, 6(4), 117. doi: 10.3390/risks6040117.
  • Horvathova, J., Mokrisova, M., & Petruska, I. (2021). Selected methods of predicting financial health of companies: Neural networks versus discriminant analysis. Information, 12(12). doi: 10.3390/info12120505.
  • Hurtosova, J. (2009). Development of rating model as a tool to assess the enterprise credibility. University of Economics in Bratislava.
  • Inam, F., Inam, A., Mian, M. A., Sheikh, A. A., & Awan, H. M. (2019). Forecasting bankruptcy for organizational sustainability in Pakistan using artificial neural networks, logit regression, and discriminant analysis. Journal of Economic and Administrative Sciences, 35(3), 183-201. doi: 10,1108/JEAS-05-2018-0063.
  • Jagiello, R. (2013). Discriminant and logistic analysis in the process of assessing the creditworthiness of enterprises. Materialy i Studia, Zeszyt, 286. Warszawa: NBP.
  • Jakubik, P., & Teply, P. (2011). The JT index as an indicator of financial stability of corporate sector. Prague Economic Papers, 20(2), 157-176. doi: 10.18267/j.pep.394.
  • Jandaghi, G., Saranj, A., Rajaei, R., Ghasemi, A., & Tehrani, R. (2021). Identification of the most critical factors in bankruptcy prediction and credit classification of companies. Iranian Journal of Management Studies, 14(4), 817-834. doi: 10.22059/IJMS.2021.285398.673712.
  • Jang, Y., Jeong, I., & Cho, Y. K. (2021). Identifying impact of variables in deep learning models on bankruptcy prediction of construction contractors. Engineering, Construction and Architectural Management, 28(10), 3282-3298. doi: 10.1108/ECAM-06-2020-0386.
  • Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. Accounting Review, 79(4), 1011-1038. doi: 10.2308/accr.2004.79.4.1011.
  • Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking & Finance, 56, 72-85. doi: 10.1016/j.jbankfin.2015.02.006.
  • Joy, O. M., & Tollefson, J. O. (1975). On the financial applications of discriminant analysis. Journal of Financial and Quantitative Analysis, 10(5), 723-739. doi: 10.2307/2330267.
  • Kaczmarek, J., Alonso, S. L. N., Sokolowski, A., Fijorek, K., & Denkowska, S. (2021). Financial threat profiles of industrial enterprises in Poland. Oeconomia Copernicana, 12(2), 463-498. doi: 10.24136/oc.2021.016.
  • Kalouda, F., & Vanicek, R. (2013). Alternative bankruptcy models-First results. In European financial systems. Telc: MUNI press.
  • Karas, M., & Reznakova, M. (2018). Building a bankruptcy prediction model: Could information about past development increase model accuracy? Polish Journal of Management Studies, 17(1), 116-130. doi: 10.17512/pjms.2018.17.1.10.
  • Karas, M., & Reznakova, M. (2020). Cash flows indicators in the prediction of financial distress. Engineering Economics, 31(5), 525-535. doi: 10.5755/j01.ee.31.5.25202.
  • Karas, M., & Režňáková, M. (2021). The role of financial constraint factors in predicting SME default. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(4), 859-883. doi: 10.24136/eq.2021.032.
  • Karbownik, L. (2017). Methods for assessing the financial risk of enterprises in the TSI sector in Poland. Lodz: Wydawnictwo Uniwersytetu Lodzkiego.
  • Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838-846. doi: 10.1016/j.ejor.2009.03.036.
  • Kim, K. S., Choi, H. H., Moon, C. S., & Mun, C. W. (2011). Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Current Applied Physics, 11(3), 740-745.
  • Kim-Soon, N., Mohammed, A. A. E., Ahmad, A. R., & Tat, H. H. (2013). Applicability of Altman's revised model in predicting financial distress: A case of PN17 companies quoted in Malaysian stock exchange. In Entrepreneurship vision 2020: innovation, development sustainability, and economic growth (pp. 350-357). IBIMA.
  • Kitowski, J., Kowal-Pawul, A., & Lichota, W. (2022). Identifying symptoms of bankruptcy risk based on bankruptcy prediction models-A case study of Poland. Sustainability, 14(3), 1416. doi: 10.3390/su14031416.
  • Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018a). Bankruptcy prevention: New effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803. doi: 10.1007/s11948-017-9912-4.
  • Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M., & Vrbka, J. (2020). Remaining financially healthy and competitive: The role of financial predictors. Journal of Competitiveness, 12(1), 74-92. doi: 10.7441/joc.2020.01.05.
  • Kliestik, T., Vrbka, J., & Rowland, Z. (2018b). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 569-593. doi: 10.24136/eq.2018.028.
  • Kliestikova, J., Misankova, M., & Kliestik, T. (2017). Bankruptcy in Slovakia: International comparison of the creditor ́s position. Oeconomia Copernicana, 8(2), 221-237. doi: 10.24136/oc.v8i2.14.
  • Korab, V. (2001). One approach to small business bankruptcy prediction: The case of the Czech Republic. In VII SIGEF congress new logistics for the new economy. Naples: SIGEFF International Association for FUZZY SET.
  • Korol, T. (2018). The implementation of fuzzy logic in forecasting financial ratios. Contemporary Economics, 12(2), 165-188. doi: 10.5709/ce.1897-9254.270.
  • Korol, T. (2019). Dynamic bankruptcy prediction models for European enterprises. Journal of Risk and Financial Management, 12(4), 185. doi: 10.3390/jrfm12040185.
  • Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. doi: 10.24136/eq.v12i4.40.
  • Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019a). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772. doi: 10.24136/oc.2019.034.
  • Kovacova, M., Krajcik, V., Michalkova, L., & Blazek, R. (2022). Valuing the interest tax shield in the Central European economies: Panel data approach. Journal of Competitiveness, 14(2), 41-59. doi: 10.7441/joc.2022.02.03.
  • Kovacova, M., Valaskova, K., Durana, P., & Kliestikova, J. (2019b). Innovation management of the bankruptcy: Case study of Visegrad group countries. Marketing and Management of Innovations, (4), 241-251. doi: 10.21272/mmi.2019.4-19.
  • Krajewski, J., Tokarski, A., & Tokarski, M. (2020). The analysis of the bankruptcy of enterprises exemplified by the Visegrad Group. Journal of Business Economics and Management, 21(2), 593-609. doi: 10.3846/jbem.2020.12232.
  • Krulicky, T., & Horak, J. (2021). Business performance and financial health assessment through artificial intelligence. Ekonomicko-manazerske spektrum, 15(2), 38-51. doi: 10.26552/ems.2021.2.38-51.
  • Kubenka, M. (2018). Improvement of prosperity prediction in Czech manufacturing industries. Engineering Economics, 29(5), 516-525. doi: 10.5755/j01.ee.29.5.18231.
  • Kubenka, M., Capek, J., & Sejkora, F. (2021). A new look at bankruptcy models. E & M Ekonomie a Management, 24(3), 167-185. doi: 10.15240/tul/001/2021-3-010.
  • Kubickova, D., & Nulicek, V. (2016). Predictors of financial distress and bankruptcy model construction. International Journal of Management Science and Business Administration, 2(6), 34-41. doi: 10.18775/ijmsba.1849-5664-5419.2014.26.1003.
  • Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review. European Journal of Operational Research, 180(1), 1-28. doi: 10.1016/j.ejor.2006.08.043.
  • Laitinen, E. K. (1991). Financial ratios and different failure processes. Journal of Business Finance & Accounting, 18(5), 649-673. doi: 10.1111/j.1468-5957.1991.tb00231.x.
  • Li, H., Chen, Q. X., Hong, L. Y., & Zhou, Q. (2019). Asset restructuring performance prediction for failure firms. Journal of Corporate Accounting & Finance, 30(4), 25-42. doi: 10.1002/jcaf.22409.
  • Lifschutz, S., & Jacobi, A. (2010). Predicting bankruptcy: Evidence from Israel. International Journal of Business and Management, 5(4), 133-141. doi: 10.5539/ijbm.v5n4p133.
  • Lukason, O., & Camacho.Minano, M. (2019). Bankruptcy risk, its financial determinants and reporting delays: Do managers have anything to hide? Risks, 7(3), 77. doi: 10.3390/risks7030077.
  • Lussier, R. N., Corman, J., & Corman, J. (1996). A business success versus failure prediction model for entrepreneurs with 0-10 employees. Journal of Small Business Strategy, 7(1), 21-36.
  • Machek, O., Smrcka, L., & Strouhal, J. (2015). How to predict potential default of cultural organizations. In 7th international scientific conference finance and performance of firms in science, education and practice. Zlin: Tomas Bata University in Zlin.
  • Maczynska, E. (1994). Assessment of the condition of the enterprise. Simplified methods. Zycie Gospodarcze, 38, 42-45.
  • Malhotra, A. (2021). A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy. Eurasian Economic Review, 11(3), 549-581. doi: 10.1007/s40822-021-00170-9.
  • Marozzi, M., & Cozzucoli, P. C. (2016). Inter-industry financial ratio comparison with application to Japanese and Chinese firms. Electronic Journal of Applied Statistical Analysis, 9(1), 40-57. doi: 10.1285/i20705948v9n1p40.
  • Meeampol, S., Lerskullawat, P., Wongsorntham, A., Srinammuang, P., Rodpetch, V., & Noonoi, R. (2014). Applying emerging market Z-score model to predict bankruptcy: A case study of listed companies in the stock exchange of Thailand (Set). Management, Knowledge and Learning, 1227-1237.
  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470. doi: 10.1111/j.1540-6261.1974.tb03058.x.
  • Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4), 101. doi: 10.14254/2071-789X.2016/9-4/6.
  • Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603-614. doi: 10.1016/j.eswa.2004.12.008.
  • Narvekar, A., & Guha, D. (2021). Bankruptcy prediction using machine learning and an application to the case of the COVID-19 recession. Data Science in Finance and Economics, 1(2), 180-195. doi: 10.3934/DSFE.2021010.
  • Neumaierova, I., & Neumaier, I. (1995). Strategy and prosperity of the Czech and Austrian companies. Politicka Ekonomie, 43(6), 798-810.
  • Nicolescu, L., & Tudorache, F. G. (2016). The evolution of non-banking financial markets in Hungary: The case of mutual funds. Management Dynamics in the Knowledge Economy, 4(4), 591-621.
  • Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In IJCNN international joint conference on neural networks. San Diego: IEEE Institute. doi: 10.1109/IJCNN.1990.137710.
  • Ogachi, D., Ndege, R., Gaturu, P., & Zoltan, Z. (2020). Corporate bankruptcy prediction model, a special focus on listed companies in Kenya. Journal of Risks and Financial Management, 13(3), 47. doi: 10.3390/jrfm13030047.
  • Ogbogo, S. (2019). Discriminant analysis: An analysis of its predictship function. Journal of Education and Practice, 10(5), 50-57. doi: 10.7176/JEP.
  • Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. doi: 10.2307/2490395.
  • Oreski, S., & Oreski, G. (2018). Cost-sensitive learning from imbalanced datasets for retail credit risk assessment. TEM Journal-Technology Education Management Informatics, 7(1), 59-73. doi: 10.18421/TEM71-08.
  • Papik, M., & Papikova, L. (2023). Impacts of crisis on SME bankruptcy prediction models' performance. Expert Systems with Applications, 214, 119072. doi: 10.1016/j.eswa.2022.119072.
  • Peres, C., & Antao, M. (2017). The use of multivariate discriminant analysis to predict corporate bankruptcy: A review. Aestimatio: The IEB International Journal of Finance, 14, 108-131. doi: 10.5605/IEB.14.6.
  • Pervan, I., Pervan, M., & Kuvek, T. (2018). Firm failure prediction: Financial distress model vs. traditional models. Croatian Operational Research Review, 9(2), 269-279. doi: 10.17535/crorr.2018.0021.
  • Peto, D., & Rozsa, A. (2015). Financial future prospect investigation using bankruptcy forecasting models in Hungarian meat processing industry. Annals of the University of Oradea, Economic Science, 24(1), 801-809.
  • Pisula, T., Mentel, G., & Brozyna, J. (2013). Predicting bankruptcy of companies from the logistics sector operating in the Podkarpacie region. Modern Management Review, 18(20), 113-133. doi: 10.7862/RZ.2013.MMR.33.
  • Pisula, T., Mentel, G., & Brozyna, J. (2015). Non-statistical methods of analysing of bankruptcy risk. Folia Oeconomica Stetinensia, 15(1). doi: 10.1515/foli-2015-0029.
  • Pitrova, K. (2011). Possibilities of the Altman Zeta model application to Czech firms. E & M Ekonomie a management, 14(3), 66-76.
  • Platt, H. D., Platt, M. B., & Pedersen, J. G. (1994). Bankruptcy discrimination with real variables. Journal of Business Finance & Accounting, 21(4), 491-510. doi: 10.1111/j.1468-5957.1994.tb00332.x.
  • Ptak-Chmielewska, A. (2021). Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods. Statistics in Transition New Series, 22(1), 179-195. doi: 10.21307/stattrans-2021-010.
  • Reznakova, M., & Karas, M. (2015). The prediction capabilities of bankruptcy mod- els in a different environment: An example of the Altman model under the conditions in the Visegrad group countries. Ekonomicky casopis, 63(6), 617-633.
  • Romero, M., Carmona, P., & Pozuelo, J. (2021). The prediction of the business failure of the Spanish cooperatives. Application of the Extreme Gradient Boosting Algorithm. CIRIEC-Espana Revista De Economia Publica Social Y Cooperativa, 101, 255-288. doi: 10.7203/CIRIEC-E.101.15572.
  • Rozsa, A. (2014). Financial performance analysis and bankruptcy prediction in Hungarian dairy sector. Annals of the University of Oradea, Economic Sciences, 1(1), 938-947. doi: 10.1108/CR-12-2014-0041.
  • Rudolfova, L., & Skerlikova, T. (2014). Discrepancy between the default and financial distress measured by bankruptcy models. Journal of Eastern European and Central Asian Research (JEECAR), 1(1), 12. doi: 10.15549/jeecar.v1i1.43.
  • Rybarova, D., Majduchova, H., Stetka, P., & Luscikova, D. (2021). Reliability and accuracy of alternative default prediction models: Evidence from Slovakia. International Journal of Financial Studies, 9(4), 65. doi: 10.3390/ijfs9040065.
  • Scott, J. (1981). The probability of bankruptcy: A comparison of empirical predictions and theoretical models. Journal of Banking & Finance, 5(3), 317-344.
  • Sharma, S. (1996). Applied multivariate techniques. New York: John Wiley and Sons Ltd.
  • Shi, Y., & Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital, 15(2), 114-127. doi: 10.3926/ic.1354.
  • Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328. doi: 10.1016/S0957-4174(02)00051-9.
  • Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101-124. doi: 10.1086/209665.
  • Sinkey Jr, J. F. (1975). A multivariate statistical analysis of the characteristics of problem banks. Journal of Finance, 30(1), 21-36. doi: 10.2307/2978429.
  • Siudek, T. (2005). Forecasting the bankruptcy of cooperative banks using discriminant analysis. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 7, 86-91.
  • Sousa, A., Braga, A., & Cunha, J. (2022). Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector. Quantitative Finance and Economics, 6(3), 405-432. doi: 10.3934/QFE.2022018.
  • Stefko, R., Horvathova, J., & Mokrisova, M. (2021). The application of graphic methods and the DEA in predicting the risk of bankruptcy. Journal of Risk and Financial Management, 14(5), 220. doi: 10.3390/jrfm14050220.
  • Subran, L., Boata, A., Kuhanathan, A., & Lemerle, M. (2022). Energy crisis, interest rates shocks and untampered recession could trigger a wave of bankruptcies. Paris: Allianz Group Economic Research.
  • Sulub, S. A. (2014). Testing the predictive power of Altman's revised Z'model: The case of 10 multinational companies. Research Journal of Finance and Accounting, 5(21), 174-184.
  • Svabova, L., & Durica, M. (2019). Being an outlier: A company non-prosperity sign?. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(2), 359-375. doi: 10.24136/eq.2019.017.
  • Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure prediction for Slovak small and medium-sized companies. Sustainability, 12(11), 4572. doi: 10.3390/su12114572.
  • Svabova, L., Durana, P., & Durica, M. (2022). Descriptive and inductive statistics. Zilina: EDIS - Publishing House of the University of Žilina.
  • Szetela, B., Mentel, G., & Brozyna, J. (2016). In search of insolvency among European countries. Economic research-Ekonomska istraživanja, 29(1), 839-856. doi: 10.1080/1331677X.2016.1237301.
  • Szeverin, E. K., & Laszlo, K. (2014). The efficiency of bankruptcy forecast models in the Hungarian SME sector. Journal of Competitiveness, 6(2), 56-73. doi: 10.7441/joc.2014.02.05.
  • Taffler, R. J. (1983). The assessment of company solvency and performance using a statistical model. Accounting and Business Research, 13(52), 295-308. doi: 10.1080/00014788.1983.9729767.
  • Taffler, R. J., & Tisshaw, H. (1977). Going, going, gone-four factors which predict. Accountancy, 88(1003), 50-54.
  • Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics & Finance, 51, 510-526. doi: 0.1016/j.iref.2017.07.025.
  • Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100. doi: 10.1016/j.jbankfin.2014.12.003.
  • Tomczak, S., & Radosinski, E. (2017). The effectiveness of discriminant models based on the example of the manufacturing sector. Operations Research and Decisions, 27(3), 81-97. doi: 10.5277/ord170306.
  • Toth, R., Kasa, R., & Lentner, C. (2022). The impact of financial culture on the operation of Hungarian SMEs before and during COVID-19. Risks, 10(7), 135. doi: 10.3390/risks10070135.
  • Valaskova, K., Androniceanu, A. M., Zvarikova, K., & Olah, J. (2021). Bonds between earnings management and corporate financial stability in the context of the competitive ability of enterprises. Journal of Competitiveness, 13(4), 167-184. doi: 10.7441/joc.2021.04.10.
  • Valaskova, K., Durana, P., Adamko, P., & Jaros, J. (2020). Financial compass for Slovak enterprises: Modeling economic stability of agricultural entities. Journal of Risk and Financial Management, 13(5), 92. doi: 10.3390/jrfm13050092.
  • Valaskova, K., Kliestik, T., Svabova, L., & Adamko, P. (2018). Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability, 10(7), 2144. doi: 10.3390/su10072144.
  • Valaskova, K., Nagy, M., Zabojnik, S., & Lazaroiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. Mathematics, 10(14), 2452. doi: 10.3390/math10142452.
  • Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking & Finance, 22(10-11), 1421-1439. doi: 10.1016/S0378-4266(98)00059-4.
  • Verma, D., & Raju, M. S. S. (2021). A comparative study of default prediction models. Pacific Business Review International, 13(8), 143-154.
  • Virag, M., & Kristof, T. (2005). Neural networks in bankruptcy prediction-A comparative study on the basis of the first Hungarian bankruptcy model. Acta Oeconomica, 55(4), 403-426.
  • Virag, M., & Nyitrai, T. (2013). Application of support vector machines on the basis of the first Hungarian bankruptcy model. Society and Economy, 35(2), 227-248. doi: 10.1556/SocEc.35.2013.2.6.
  • Vochozka, M., Strakova, J., & Vachal, J. (2015). Model to predict survival of transportation and shipping companies. Nase More, 62(3), 109-113. doi: 10.17818/NM/2015/SI4.
  • Voda, A. D., Dobrota, G., Tirca, D. M., Dumitrascu, D. D., & Dobrota, D. (2021). Corporate bankruptcy and insolvency prediction model. Technological and Economic Development of Economy, 27(5), 1039-1056. doi: 10.3846/tede.2021.15106.
  • Wang, B. (2004). Strategy changes and internet firm survival. University of Minnesota.
  • Ward, T. J. (1994). An empirical study of the incremental predictive ability of Beaver's naive operating flow measure using four-state ordinal models of financial distress. Journal of Business Finance & Accounting, 21(4), 547-561. doi: 10.1111/j.1468-5957.1994.tb00335.x.
  • Wedzki, D. (2000). The problem of using the ratio analysis to predict the bankruptcy of Polish enterprises-Case study. Bank i Kredyt, 5, 54-61.
  • Wertheim, P., & Lynn, M. L. (1993). Development of a prediction model for hospital closure using financial accounting data. Decision Sciences, 24(3), 529-546. doi: 10.1111/j.1540-5915.1993.tb01292.x.
  • Wieprow, J., & Gawlik, A. (2021). The use of discriminant analysis to assess the risk of bankruptcy of enterprises in crisis conditions using the example of the tourism sector in Poland. Risks, 9(4), 78. doi: 10.3390/risks9040078.
  • Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1), 19-45. doi: 10.1111/j.1468-5957.1985.tb00077.x.
  • Zmijewski, M. E. (1984) Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. doi: 10.2307/2490859.
  • Zvarikova, K., Spuchlakova, E., & Sopkova, G. (2017). International comparison of the relevant variables in the chosen bankruptcy models used in the risk management. Oeconomia Copernicana, 8(1), 145-157. doi: 10.24136/oc.v8i1.10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171664843

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.