PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | nr 47 | 5--19
Tytuł artykułu

Study on performance of a green hydrogen production system integrated with the thermally activated cooling

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy transition is at the centre of research and development activities with the aim to fight against the effects of global warming. Today, renewable energies play a significant role in the electricity supply to the World and their use increases day after day. Because of the intermittency of a large-scale production system generates the need to develop clean energy storage systems. Hence, energy storage systems play is one of key elements in the energy transition. In this perspective, a green hydrogen is defined as an energy carrier thanks to its high energy density in relation to its negligible mass, not to mention its abundance in our environment, and its extraction, which does not contribute to any greenhouse gases. However, the production cost is not negligible. Hence, this work shows a numerical modelling of the heat balance from a green hydrogen production system using a thermal storage in a Metal Hydride (MH) tank for an electrification by Proton Exchange Membrane (PEM) fuel cell integrated into the production of heating, cooling and sanitary hot water (SHW) through the recovery of the heat released by the whole system combined with the technology of thermally activated cooling of an adsorber. This allows demonstrating that the green hydrogen can be an interesting solution according in the hydrogen production chain and in the tertiary sectors.(original abstract)
Czasopismo
Rocznik
Numer
Strony
5--19
Opis fizyczny
Twórcy
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University
Bibliografia
  • World Population Prospects, World Popul. Prospect. (2016). https://doi.org/10.18356/cd7acf62-en.
  • A. Cascini, M. Gamberi, C. Mora, M. Rosano, M. Bortolini, Comparative Carbon Footprint Assessment of commercial walk-in refrigeration systems under different use configurations, "Journal of Cleaner Production", 112 (2016) 3998-4011. https://doi.org/10.1016/j.jclepro.2015.08.075.
  • The Future of Cooling - AnalysisIEA, (2020), https://www.iea.org/reports/the-future-of-cooling.
  • D.W. Wu, R.Z. Wang, Combined cooling, heating and power: A review, "Progress in Energy and Combustion Science", 32 (2006) 459-495. https://doi.org/10.1016/j.pecs.2006.02.001.
  • Commissariat general au developpement durabl, Chiffres cles de l'energie, 2019.
  • ADEME, Climate 2012, 2018.
  • F. Sun, J. Li, L. Fu, Y. Li, R. Wang, S. Zhang, New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens, "Energy", 193 (2020) 116707. https://doi.org/10.1016/j.energy.2019.116707.
  • C.P.-E. de l'Ifri, U. Ifri, U. 2020, Perspectives on a Hydrogen Strategy for the European Union, Ifri.Org. (2020). https://www.ifri.org/sites/default/files/atoms/files/philibert_hydrogen_strategy_2020.pdf.
  • Https://www.revolution-energetique.com/la-toute-premiere-batterie-domestique-a-hydrogene-quel-est-son-interet/, La toute premiere batterie domestique a hydrogene : quel est son interet ?, (2021).
  • T. Orozco, M. Herrera, J.D. Forero, CFD study of heat exchangers applied in brayton cycles: A case study in supercritical condition using carbon dioxide as working fluid, "International Review on Modelling and Simulations, Impact Factor & Key Scientometrics", 12 (2019) 72-82. https://doi.org/10.15866/iremos.v12i2.17221.
  • M. De L', H. Fiche, Fiche 3.2.1 Revision : septembre 2019, in: AFHYPAC-Th. Alleau Mémento l'Hydrogene Prod. D'Hydrogene Par Electrolyse l'eau, 2019.
  • R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H. Majlan, M.A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, "International Journal of Hydrogen Energy", 42 (2017) 9293-9314. https://doi.org/10.1016/j.ijhydene.2016.06.211.
  • K. Maeda, M. Suzuki, H. Aki, R&D and deployment of residential fuel cell cogeneration systems in Japan, in: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-5. https://doi.org/10.1109/PES.2008.4596046.
  • L.P. Moulebe, T. Abdelwahed, A.O. Eric, R. Nabila, Mathematical modeling of re-electrification by green hydrogen storage through the PEM fuel cell integrating a 10-year economic study applied to a hotel, E3S Web Conf. 229 (2021) 01038. https://doi.org/10.1051/e3sconf/202122901038.
  • L.P. Moulebe, T. Abdelwahed, R. Nabila, Implementation of an Advanced PEM Hydrogen Storage System Based Cogeneration Using Photovoltaic System in a Building, in: 2020 International Conference on Control, Automation and Diagnosis, ICCAD 2020 - Proc., IEEE, 2020: pp. 1-6. https://doi.org/10.1109/ICCAD49821.2020.9260552.
  • N. Enteria, K. Mizutani, The role of the thermally activated desiccant cooling technologies in the issue of energy and environment, "Renewable and Sustainable Energy Reviews", 15 (2011) 2095-2122. https://doi.org/10.1016/j.rser.2011.01.013.
  • K. Knosala, L. Kotzur, F.T.C. Röben, P. Stenzel, L. Blum, M. Robinius, D. Stolten, Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy, "International Journal of Hydrogen Energy", 46 (2021) 21748-21763. https://doi.org/10.1016/j.ijhydene.2021.04.036.
  • M. Marinelli, M. Santarelli, Hydrogen storage alloys for stationary applications," Journal Energy Storage", 32 (2020) 101864. https://doi.org/10.1016/j.est.2020.101864.
  • F. Rezaie, R. Roshandel, A. A. Hamidi, Hydrogen management in refineries: Retrofitting of hydrogen networks, electricity and ammonia production, "Chemical Engineering and Processing - Process Intensification", 157 (2020) 108118. https://doi.org/10.1016/j.cep.2020.108118.
  • M. V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Metal hydride hydrogen compressors: A review, "International Journal of Hydrogen Energy", 39 (2014) 5818-5851. https://doi.org/10.1016/j.ijhydene.2014.01.158.
  • M. Kayfeci, A. Keçebaş, Hydrogen storage, in: Solar Hydrogen Production: Processes, Systems and Technologies, Elsevier, 2019: pp. 85-110. https://doi.org/10.1016/B978-0-12-814853-2.00004-7.
  • J. Deng, R.Z. Wang, G.Y. Han, A review of thermally activated cooling technologies for combined cooling, heating and power systems, "Progress in Energy and Combustion Science", 37 (2011) 172-203. https://doi.org/10.1016/j.pecs.2010.05.003.
  • Q. Pan, J. Peng, R. Wang, Experimental study of an adsorption chiller for extra low temperature waste heat utilization, "Applied Thermal Engineering", 163 (2019) 114341. https://doi.org/10.1016/j.applthermaleng.2019.114341.
  • M. Chorowski, P. Pyrka, Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration, "Energy", 92 (2015) 221-229. https://doi.org/10.1016/j.energy.2015.05.079.
  • M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, V. Yartys, The use of metal hydrides in fuel cell applications, "Progress in Natural Science: Materials International", 27 (2017) 3-20. https://doi.org/10.1016/j.pnsc.2017.01.008.
  • B. Han, A. Chakraborty, Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances, "Applied Thermal Engineering", 175 (2020) 115393. https://doi.org/10.1016/j.applthermaleng.2020.115393.
  • H.T. Chua, K.C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B.B. Saha, Modeling the performance of two-bed, silica gel-water adsorption chillers, "International Journal of Refrigeration", 22 (1999) 194-204. https://doi.org/10.1016/S0140-7007(98)00063-2.
  • J.G. Wanjiku, M.A. Khan, P.S. Barendse, A.B. Sebitosi, Analytical sizing of an electrolyser for a small scale wind electrolysis plant, IEEE International Energy Conference and Exhibition (EnergyCon) 2010. (2010) 10-15. https://doi.org/10.1109/ENERGYCON.2010.5771658.
  • P. Nika, Y. Bailly, F. Lanzetta, Transferts thermiques en écoulements oscillants laminaires incompressibles, "International Journal of Refrigeration", 28 (2005) 353-367. https://doi.org/10.1016/j.ijrefrig.2004.08.012.
  • Https://normag-glas.de/fr/katalog_neu/prozess/FR-6-WARMEUBERTRAGER_PF-System_140930.pdf, SYSTÈME PF 6.1 Indice A Généralités, (2018).
  • C. Park, X. Tang, K.J. Kim, Q. Leland, J. Gottschlich, Metal hydride heat storage technology for directed energy weapon systems, ASME's International Mechanical Engineering Congress & Exposition, 8 (2007) 961-969. https://doi.org/10.1115/IMECE2007-42831.
  • B.P. Tarasov, P. V. Fursikov, A.A. Volodin, M.S. Bocharnikov, Y.Y. Shimkus, A.M. Kashin, V.A. Yartys, S. Chidziva, S. Pasupathi, M. V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies, "International Journal of Hydrogen Energy", 46 (2021) 13647-13657. https://doi.org/10.1016/j.ijhydene.2020.07.085.
  • M. V. Lototskyy, V.A. Yartys, B.P. Tarasov, M.W. Davids, R. V. Denys, S. Tai, Modelling of metal hydride hydrogen compressors from thermodynamics of hydrogen - Metal interactions viewpoint: Part I. Assessment of the performance of metal hydride materials, "International Journal of Hydrogen Energy", 46 (2021) 2330-2338. https://doi.org/10.1016/j.ijhydene.2020.10.090.
  • C.S. Wang, J. Brinkerhoff, Advances in mathematical modeling of hydrogen adsorption and desorption in metal hydride beds with lattice Boltzmann method, "International Journal of Hydrogen Energy", 45 (2020) 32179-32195. https://doi.org/10.1016/j.ijhydene.2020.08.171.
  • M. Schicktanz, T. Núñez, Modelling of an adsorption chiller for dynamic system simulation, "International Journal of Refrigeration", 32 (2009) 588-595. https://doi.org/10.1016/j.ijrefrig.2009.02.011.
  • B. Han, A. Chakraborty, Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances, "Applied Thermal Engineering", 175 (2020) 115393. https://doi.org/10.1016/j.applthermaleng.2020.115393.
  • H. El Mghari, J. Huot, J. Xiao, Analysis of hydrogen storage performance of metal hydride reactor with phase change materials, "International Journal of Hydrogen Energy", 44 (2019) 28893-28908. https://doi.org/10.1016/j.ijhydene.2019.09.090.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171665201

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.