PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 31 | nr 2 | 102--110
Tytuł artykułu

Towards Improved Management within the Cottage Industry : Product Lifecycle Management Case

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Product Lifecycle Management remains a strategy that aims to strengthen the capabilities and competitive advantages of the company. Its implementation and its adoption depend on the problems that are brought back to be solved by this tool as well as its acceptance by the companies that will implement it. Hence, we like to introduce this approach within the cottage industry to improve its competitiveness. For this, we are going to present this article as being the first step towards the introduction of this strategy within the craft sector. So, we aim to investigate the problems faced by the craft sector, the levers favoring the establishment of this kind of approach and to analyse the independence between the problems investigated, the nature of the companies interviewed and their sector of activity. Data was gathered from surveys of 132 craft industries the primary data analysis was performed using excel and SPSS techniques and chi square test. The results affirm that the management and communication problems, as well as problems related to the raw material waste, are the most dominant in the sector. Moreover, our study shows that the problems faced by the sector are independent towards the nature of the company and the sector of activity. (original abstract)
Rocznik
Tom
31
Numer
Strony
102--110
Opis fizyczny
Twórcy
  • University Sidi Mohammed Ben Abdellah
  • University Sidi Mohammed Ben Abdellah
Bibliografia
  • [1] M. Grieves, Product lifecycle management: driving the next generation of lean thinking, J. Prod. Innov. Manag. 24 (2007). pp. 278-280, http://dx.doi.org/10.1111/j. 15405885.2007.00250 2.x.
  • [2] S. Ren, Y. Zhang, Y. Liu, T. Sakao, D. Huisingh, C.M.V.B. Almeida, (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: a framework, challenges and future research directions. J. Clean. Prod. 210, 1343e1365. https://doi.org/10.1016/ J.JCLEPRO.2018.11.025.
  • [3] F. Pirola, X. Boucher, S. Wiesner, G. Pezzotta., Digital technologies in product-service systems: a literature review and a research agenda, Computers in Industry Volume 123, December 2020, 103301, https://doi.org/10.1016/j.compind.2020.103301.
  • [4] CIMdata Inc., (2003). Product Lifecycle Management "Empowering the future of business".
  • [5] K.H. Kung, C.F. Ho, W.H. Hung, C.C. Wu, Organizational adaptation for using PLM systems: group dynamism and management involvement, Ind. Mark. Manag. 44 (2015) pp. 83-97, https://doi.org/10.1016/j.indmar- man.2014.04.018.
  • [6] Y. Zhang, S. Ren, Y. Liu, S. Si, (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 142, 626e641. https://doi.org/10.1016/j.jclepro.2016.07.123
  • [7] J. Stark, Product lifecycle management, In Product Lifecycle Management 1 Springer, Cham, (2015). pp. 1-29, https://doi.org/10.1007/978-3-319-17440-2_1.
  • [8] S. Terzi, A. Bouras, D. Dutta, M. Garetti, D. Kiritsis, Product lifecycle management from its history to its new role, Int. J. Prod. Lifec. Manag. 4 (4) (2010). pp. 360-389.
  • [9] J. Stark, Product lifecycle management, Prod. Lifecycle Manag. (2011). pp. 6-7, http://dx.doi.org/10.1007/978-0- 85729-546-0.
  • [10] J.G. Enríquez, J.M. Sánchez-Begines, F.J. Domínguez-Mayo, J.A. García-García, M.J. Escalona, An approach to characterize and evaluate the quality of Product Lifecycle Ma- nagement Software Systems, Computer Standards & Interfaces Volume 61, January (2019). pp. 77-88, https://doi.org/10.1016/j.csi.2018.05.003.
  • [11] E. d'Avolio, R. Bandinelli, R. Rinaldi, Improving new product development in the fashion industry through product lifecycle management: a descriptive analysis, Int. J. Fashion Des. Technol. Educ. 8 (2) (2015). pp. 108-121, https://doi.org/10.1080/17543266.2015.1005697.
  • [12] C. Pinna, F. Galati, M. Rossi, C. Saidy, R. Harik, S. Terzi, Effect of product lifecycle management on new product development performances: Evidence from the food industry, Computers in Industry Volume 100, September (2018). pp. 184-195. https://doi.org/10.1016/j.com- pind.2018.03.036.
  • [13] X.L. Liu, W.M. Wang, Hanyang Guo, Ali Vatankhah Barenji, Zhi Li, George Q. Huang, Industrial blockchain based framework for product lifecycle management in industry 4.0, Robotics and Computer Integrated Manufacturing 63 (2020). 101897, https://doi.org/10.1016/j.rcim.2019.101897.
  • [14] M. David, F. Rowe, What does PLMS (product lifecycle management systems) manage: data or documents? Complementarity and contingency for SMEs, Comput. Ind. 75 (2016). pp. 140-150, https://doi.org/10.1016/j.com-pind.2015.05.005.
  • [15] H. Cao, P. Folan, Product life cycle: the evolution of a paradigm and literature review from 1950-2009, Prod. Plan. Control 23 (8) (2012). pp. 641-662, https://doi.org/10.1080/09537287.2011.577460.
  • [16] Jr. Paulo Cesar Duarte, F. Nakao, A.Ortenzi, Integrated product development and lifecycle management in building production - A case study for logistic of mortar distribution in building sites, Journal of Building Engineering Volume 32, November (2020). 101802, https://doi.org/10.1016/j.jobe.2020.101802.
  • [17] M. Alemanni, F. Destefanis, E. Vezzetti, Model-based definition design in the product lifecycle management scenario, Int. J. Adv. Manuf. Technol. 52 (1-4) (2011). pp. 1-14, https://doi.org/10.1007/s00170-010-2699-y.
  • [18] I. Morshedzadeh, J. Oscarsson, A. Ng , M. Jeusfeld, J. Sillanpaa, Product lifecycle management with provenance management and virtual models: an industrial use-case study, Procedia CIRP Volume 72, (2018). pp. 1190-1195, https://doi.org/10.1016/j.procir.2018.03.157.
  • [19] P.G. Maropoulos, D. Ceglarek, Design verification and validation in product lifecycle, CIRP Ann. Manuf. Technol. 59 (2) (2010). pp. 740-759, https://doi.org/10.1016/ j.cirp.2010. 05.005.
  • [20] M. Mahdjoub, D. Monticolo, S. Gomes, J.C. Sagot, A collaborative design for usability approach supported by virtual reality and a multi-agent system embedded in a PLM environment, Comput. Aided Des. 42 (5) (2010). pp. 402-413, https://doi.org/10.1016/j.cad.2009.02.009.
  • [21] P. Holtewert, R. Wutzke, J. Seidelmann, T. Bauernhansl, Virtual fort knox federative, secure and cloud-based platform for manufacturing, Procedia CIRP 7 (2013). pp. 527-532, https://doi.org/10.1016/j.procir.2013.06.027.
  • [22] E. Thomas, E. Andreas, C.G. Jens & E. Martin, (2020). A Metadata Repository for Semantic Product Lifecycle Management. 30th CIRP Design 2020.
  • [23] T. Sakao, Y. Liu, R. Gustafsson, & G. Thörnblad. (2017). A method for lifecycle design of product/service systems using PLM software. In Proceedings of the IFIP International Conference on Product Lifecycle Management pp. 710-718. Springer, Cham. 10.1007/978-3-319-72905-3_63.
  • [24] D. Tchoffa, N. Figay, P. Ghodous, H. Panetto, A. El Mhamedi, (2021). Alignment of the product lifecycle management federated interoperability framework with internet of things and virtual manufacturing. Computers in Industry. Volume 130, September 2021, 103466 https://doi.org/10.1016/j.compind.2021.103466.
  • [25] L. Jiewu, R. Guolei, J. Pingyu, X. Kailin, L. Qiang, Z. Xueliang & L. Chao, (2020). Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renewable and Sustainable Energy Reviews Volume 132, October 2020, 110112 https://doi.org/10.1016/j.rser.2020.110112.
  • [26] D.A. Mckendry, R.I. Whitfield, A.H.B. Duffy, (2022). Product Lifecycle Management implementation for high value Engineering to Order programmes: An informational perspective. Journal of Industrial Information Integration Volume 26, March 2022, 100264. https://doi.org/10.1016/j.jii.2021.100264.
  • [27] J.D. Camba, M. Contero, G. Salvador-Herranz, R. Plumed, Synchronous communication in PLM environments using annotated CAD models, J. Syst. Sci. Syst. Eng 25 (2016). pp. 142-158, http://dx.doi.org/10.1007/s11518-016-5305-5.
  • [28] M. Bertoni, A. Bertoni, (2022). Designing solutions with the product-service systems digital twin: what is now and what is next? Comput. Ind. 138,103629.
  • [29] M. Ebel, D. Jaspert, J. Poeppelbuss, 2022. Smart already at design time - pattern-based smart service innovation in manufacturing. Comput. Ind. 138,103625.
  • [30] R. Woitsch, D. Falcioni, A. Sumereder, (2022). Model-based data integration along the product & service life cycle supported by digital twinning. Comput. Ind. 140, 103648.
  • [31] S. Singh, and S. C. Misra, (2018). "Identification of barriers to PLM institutionalization in large manufacturing organizations: A case study," Business Process Management Journal, https://doi.org/10.1108/BPMJ-12-2017-0367.
  • [32] S. Singh, S.C. Misra, and S. Kumar, (2020). "Identification and ranking of the risk factors involved in PLM implementation," International Journal of Production Economics, Volume 222, April 2020, 107496. https://doi.org/10.1016/j.ijpe.2019.09.017
  • [33] P.E. Greenwood, M.S. Nikulin, A guide to chi-squared testing, Wiley-Interscience, New York, NY, 1996.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171666459

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.