Czasopismo
2022
|
z. 164 Zarządzanie zasobami ludzkimi: perspektywy, wdrażanie i wyzwania = Human Resource Management : Perspectives, Implementation and Challenges
|
527--540
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The cognitive goal of the article is to quantify various states of variables influencing the worker's burden in the assembly process. On the other hand, the utilitarian goal is to assess the significance of variables for the application of artificial neural networks methods in supporting IE management. Design/methodology/approach: The article deals with the management of ergonomic interventions in industry 4.0. The main tasks during the assembly process were defined on the example of the window production analysis. The application of the method of registering human load indicators to manage the states of variables in the chain of operation of the assembly process was justified. The study analyzed 16 states of variables such as noise, work pace, forced body position, movement, and the location of information and control elements of the IT system. During the bench tests, postural load, heart rate and NASA-TLX assessment were performed. In the preliminary and final studies, metric data was collected, cognitive-motor skills and work fatigue were assessed. The obtained results were quantified using a quantitative comparative method. Findings: The article verifies the approach of measuring the individual workload of an employee for shaping working conditions in the context of assembly works. For the examined example, the weights of the system variables for the inference of artificial intelligence were determined in detail. Research limitations/implications: The main limitation of the study is the research sample. Although the concept departs from statistical research, from the point of view of science, it is reasonable to look for the correlation of the burden on individual user groups, e.g. the elderly, people with disabilities. It is also important to further measure the synergy of individual variables. Originality/value: The novelty of the article is the idea of EI management in the aspect of industry 4.0 through operational shaping and tactical state variables affecting the individual workload of an employee with the use of methods of artificial neural networks. For this purpose, a conceptual method of determining the workload of an employee was presented. The work is addressed to theorists and practitioners responsible for designing and organizing working conditions.(original abstract)
Rocznik
Strony
527--540
Opis fizyczny
Twórcy
autor
- Poznan University of Technology
Bibliografia
- 1. Butlewski, M. (2018). Projektowanie ergonomiczne wobec dynamiki deficytu zasobów ludzkich. Wydawnictwo Politechniki Poznańskiej.
- 2. Dewicka, A. (2016). Charakterystyka instytucjonalnego programu wspierania innowacji techniczno-ergonomicznych w małych i średnich przedsiębiorstwach. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie.
- 3. Endsley, M.R. (1995). A taxonomy of situation awareness errors. Human factors in aviation operations, 3(2), pp.287-292.
- 4. Grabowski, S., Muraszkiewicz, M. (2017). Modelowanie ekosystemów informacyjnych dla innowacyjnych społeczności programistycznych. Zagadnienia Informacji Naukowej-Studia Informacyjne, 55(2(110)), 30-45.
- 5. Griffin, M.A., Neal, A., Parker, S.K. (2007). A new model of work role performance: Positive behavior in uncertain and interdependent contexts. Academy of management journal, 50(2), pp. 327-347.
- 6. Hart, S.G., Staveland, L.E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, Vol. 52, pp. 139-183. North-Holland.
- 7. Jantsch, E. (1972). Towards interdisciplinarity and transdisciplinarity in education and innovation. Interdisciplinarity.
- 8. Jasiak, A., Misztal, A. (2004). Makroergonomia i projektowanie makroergonomiczne: materiały pomocnicze. Wyd. Politechniki Poznańskiej.
- 9. Kaasinen, E., Schmalfuß, F., Özturk, C., Aromaa, S., Boubekeur, M., Heilala, J., ... Mehta, R. (2020). Empowering and engaging industrial workers with Operator 4.0 solutions. Computers & Industrial Engineering, 139, 105678.
- 10. Lego.com, https://www.lego.com/cdn/product-assets/product.bi.core.pdf/6394257.pdf.
- 11. Longo, F., Nicoletti, L., Padovano, A. (2017). Smart operators in industry 4.0: A human-centered approach to enhance operators' capabilities and competencies within the new smart factory context. Computers & industrial engineering, 113, 144-159.
- 12. Moschetti, A., Fiorini, L., Esposito, D., Dario, P., Cavallo, F. (2016). Recognition of daily gestures with wearable inertial rings and bracelets. Sensors, 16(8), p. 1341.
- 13. Mulder, L.B.J., de Waard, D., Brookhuis, K.A. (2004). Estimating mental effort using heart rate and heart rate variability. In Handbook of human factors and ergonomics methods (pp. 227-236). CRC Press.
- 14. Pacholski, L., Kałkowska, J. (2019). Perspektywy zmienności paradygmatów ergonomii i organizacji przemysłowych procesów wytwarzania maszyn. In: L. Pacholski, J. Kałkowska, P. Kiełbasa, Ergonomia wobec wyzwań masowości i globalizacji w produkcji.
- 15. Panetto, H., Iung, B., Ivanov, D., Weichhart, G., Wang, X. (2019). Challenges for the cyber-physical manufacturing enterprises of the future. Annual Reviews in Control, 47, 200-213.
- 16. Peruzzini, M., Pellicciari, M. (2018). User experience evaluation model for sustainable manufacturing. International Journal of Computer Integrated Manufacturing, 31(6), pp. 494-512.
- 17. Peruzzini, M., Grandi, F., Pellicciari, M. (2020). Exploring the potential of Operator 4.0 interface and monitoring. Computers & Industrial Engineering, 139, p. 105600.
- 18. Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., Gorecky, D. (2016). Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. Proceedings of the international conference on computers and industrial engineering (CIE46). Tianjin, China, pp. 29-31.
- 19. Slawinska, M., Wrobel, K. (2021). Indicative Method of Human Failure in Sustainable Chain of Custody Management. European Research Studies, 24(S5), 709-726.
- 20. Tan, Q., Tong, Y., Wu, S., Li, D. (2019). Anthropocentric Approach for Smart Assembly: Integration and Collaboration. Journal of Robotics.
- 21. Taylor, M.P., Boxall, P., Chen, J.J., Xu, X., Liew, A., Adeniji, A. (2020). Operator 4.0 or Maker 1.0? Exploring the implications of Industrie 4.0 for innovation, safety and quality of work in small economies and enterprises. Computers & Industrial Engineering, 139, 105486.
- 22. Wróbel, K. (2020). Metoda kształtowania ergonomiczności ręcznych elementów sterowniczych dla osób starszych, praca doktorska. Wydział Inżynierii Zarządzania. Politechnika Poznańska, https://www.fem.put.poznan.pl/strona/sites/default/files/Doktor/ 15_Praca_doktorska_2019_Wrobel_Kamil_15_11_2019.pdf, 20.08.2020.
- 23. Wróbel, K., Hoffmann, T., Czarnecki, K. (2020). Management of Ergonomic Interventions when Modeling The Technological Processes in The Industry 4.0. Proceedings of the 36th International Business Information Management Association Conference (IBIMA), 4-5 November 2020, Granada, Spain. Sustainable Economic Development and Advancing Education Excellence in the era of Global Pandemic, pp. 3202-3211.
- 24. Youtube.com, https://www.youtube.com/watch?v=UOodLJof7Y0
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171666939