PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 24 | 31--37
Tytuł artykułu

Examining the Implication of AI (Artificial Intelligence) Solutions for the Operational Risk in Enterprises and/or in Financial Institutions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to analyze the influences of Artificial Intelligence on Operational Risk Management, the new Operational Risks that AI might introduce, and the existing AI-based technologies for managing Operational Risks in enterprises and/or financial institutions. This investigation has found that Artificial Intelli - gence has increased automation, analytical power, the elimination of time-consuming and repetitive operations and procedures, in-depth understanding of data, simplified decision-making, retention of competent staff and customers, economies of scale, fraud detection, and suspicious transaction identification, 32 anti-money laundering and fraud prevention control, credit evaluation, and cyber security. Algorithmic risk (bias, feedback, and misuse), hidden layers, and less traceability of Artificial Intelligence all can contribute to the introduction of new Operational Risks. (original abstract)
Rocznik
Numer
Strony
31--37
Opis fizyczny
Twórcy
  • Poznań University of Technology
  • Poznan University of Technology, Poland
Bibliografia
  • Arsic V.B. (2021), Challenges of Financial Risk Management: AI Applications, "Management: Journal of Sustainable Business and Management Solutions in Emerging Economies" [Preprint], DOI: 10.7595/management.fon.2021.0015.
  • Aziz S. i Dowling M. (2018), AI and Machine Learning for Risk Management, "SSRN Electronic Journal" [Preprint], DOI: 10.2139/ssrn.3201337.
  • Biolcheva P. (2021), The place of artificial intelligence in the risk management process, "SHS Web of Conferences", s. 120, DOI: 10.1051/shsconf/202112002013.
  • de Carvalho M.C.P. (2021), The impact of artificial intelligence in operational risk management, https:// repositorio.iscte-iul.pt/handle/10071/23075, [dostęp: 19.11.2021].
  • Fernandez A. (2019), Artificial Intelligence in Financial Services, SSRN, Rochester, NY: Social Science Research Network, DOI: 10.2139/ssrn.3366846.
  • Frederica D. i Murwaningsari E. (2021), The Effect of the Use of Artificial Intelligence and Operational Risk Management on Banking Performance with the Implementation of Regulation as a Moderation Variable, D E G R E S, 20(1), s. 146-158, DOI: 10.1877/degres.v20i1.50.
  • Leo M., Sharma S. i Maddulety K. (2019), Machine Learning in Banking Risk Management: A Literature Review, "Risks", 7(1), s. 29, DOI: 10.3390/risks7010029.
  • Min H. (2010), Artificial intelligence in supply chain management: theory and applications, "International Journal of Logistics Research and Applications", 13(1), s. 13-39, DOI: 10.1080/13675560902736537.
  • Mohammed I.A. (2020), Artificial Intelligence for Cybersecurity: a Systematic Mapping Of Literature, "SSRN Electronic Journal", 7, s. 172-176.
  • Neelam M. (2022), Aspects of Artificial Intelligence, [w:] J. Karthikeyan, S.-H. Ting and Y.-J. Ng (red.), Learning Outcomes of Classroom Research, s. 250-256, L'Ordine Nuovo Publication, India, DOI: 978-93-92995-15-6.
  • Soni V.D. (2019), Role of Artificial Intelligence in Combating Cyber Threats in Banking, "IEJRD", (1), s. 8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171667135

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.