PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | nr 48 | 22--37
Tytuł artykułu

A brief overview of the use of additive manufacturing of con-create materials in construction

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, additive technology is becoming more and more popular in different areas, including its applications in construction industry. The main aim of the chapter is to show the selected applications of 3D printing technology in the construction industry and the usage of this technology on different stages of a construction project, from architectural design to performance of residential buildings and other civil engineering constructions. The chapter is based on a critical analysis of the literature sources, as well as the authors' experiences. The data collected are supported by selected case studies from five projects. The main findings show that 3D printing brings a lot of advantages in the construction industry, for instance: low labor costs, less waste, and high efficiency, but it still requires development and optimization.(original abstract)
Czasopismo
Rocznik
Numer
Strony
22--37
Opis fizyczny
Twórcy
  • Cracow University of Technology, Poland
  • Cracow University of Technology, Poland
  • Cracow University of Technology, Poland
autor
  • National Ilan University,Taiwan
  • Nha Trang Universit, Vietnam
  • Cracow University of Technology, Poland
Bibliografia
  • P.J. Benghozi, D. Krob, F. Rowe, Advances in Intelligent Systems and Computing: Preface, in: M. Gzik, Z. Paszenda, E. Pietka, E. Tkacz, K. Milewski (Eds.), Advances in Intelligent Systems and Computing, Springer, 2013: p. Volume 1223. https://doi.org/10.1007/978-3-642-37317-6.
  • R.W. Schirmer, M. Abendroth, S. Roth, L. Kühnel, H. Zeidler, B. Kiefer, Simulation-supported characterization of 3D-printed biodegradable structures, "GAMM Mitteilungen", 44 (2021). https://doi.org/10.1002/gamm.202100018.
  • J.G. Sanjayan, B. Nematollahi, M. Xia, T. Marchment, Effect of surface moisture on inter-layer strength of 3D printed concrete, "Construction and Building Materials", 172 (2018) 468-475. https://doi.org/10.1016/j.conbuildmat.2018.03.232.
  • N. Labonnote, A. Rønnquist, B. Manum, P. Rüther, Additive construction: State-of-the-art, challenges and opportunities, "Automation in Construction" 72 (2016) 347-366. https://doi.org/10.1016/j.autcon.2016.08.026.
  • B. Panda, M.J. Tan, Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application, "Materials Letters", 237 (2019) 348-351. https://doi.org/10.1016/j.matlet.2018.11.131.
  • D.G. Soltan, V.C. Li, A self-reinforced cementitious composite for building-scale 3D printing, "Cement and Concrete Composites", 90 (2018) 1-13. https://doi.org/10.1016/j.cemconcomp.2018.03.017.
  • M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications, "Materials & Design", 110 (2016) 382-390. https://doi.org/10.1016/j.matdes.2016.07.136.
  • K. Korniejenko, M. Łach, Geopolymers reinforced by short and long fibres - innovative materials for additive manufacturing, "Current Opinion in Chemical Engineering" 28 (2020) 167-172. https://doi.org/10.1016/j.coche.2020.06.005.
  • S. Qaidi, A. Yahia, B.A. Tayeh, H. Unis, R. Faraj, A. Mohammed, 3D printed geopolymer composites: A review, "Materials Today Sustainability", 20 (2022) 100240. https://doi.org/10.1016/j.mtsust.2022.100240.
  • Z. Li, L. Wang, G. Ma, Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions, "Composites Part B: Engineering", 187 (2020) 107796. https://doi.org/10.1016/j.compositesb.2020.107796.
  • K. Korniejenko, Do we need innovations? 3D printing technology for construction materials, (2020). https://uia-initiative.eu/en/news/do-we-need-innovations-3d-printing-technology-constructionmaterials-zoom-2.
  • C. Montes, K. Broussard, M. Gongre, N. Simicevic, J. Mejia, J. Tham, E. Allouche, G. Davis, Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications, "Advances in Space Research", 56 (2015) 1212-1221. https://doi.org/10.1016/j.asr.2015.05.044.
  • G. Davis, C. Montes, S. Eklund, Preparation of lunar regolith based geopolymer cement under heat and vacuum, "Advances in Space Research" 59 (2017) 1872-1885. https://doi.org/10.1016/j.asr.2017.01.024.
  • K. Korniejenko, K. Pławecka, B. Kozub, An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology, "Energies" 15 (2022) 9322. https://doi.org/10.3390/en15249322.
  • J. Marczyk, C. Ziejewska, K. Pławecka, A. Bak, M. Łach, K. Korniejenko, I. Hager, J. Mikuła, W.T. Lin, M. Hebda, Optimizing the L/S Ratio in Geopolymers for the Production of Large-Size Elements with 3D Printing Technology, "Materials" (Basel). 15 (2022) 3362. https://doi.org/10.3390/ma15093362.
  • C. Achillas, D. Aidonis, E. Iakovou, M. Thymianidis, D. Tzetzis, A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory, "Journal of Manufacturing Systems", 37 (2015) 328-339. https://doi.org/10.1016/j.jmsy.2014.07.014.
  • A. V. Rahul, M. Santhanam, H. Meena, Z. Ghani, 3D printable concrete: Mixture design and test methods, "Cement and Concrete Composites", 97 (2019) 13-23. https://doi.org/10.1016/j.cemconcomp.2018.12.014.
  • M. Xia, J.G. Sanjayan, Methods of enhancing strength of geopolymer produced from powder-based 3D printing process, "Materials Letters" 227 (2018) 281-283. https://doi.org/10.1016/j.matlet.2018.05.100.
  • D. Klewinghaus, 3D Printing in the Kabisch-Lab, "Napędy i Sterowanie", 22 (2018) 1-3.
  • [20] H. Yi, 4D-printed parametric façade in architecture: prototyping a self-shaping skin using programmable two-way shape memory composite (TWSMC), "Engineering, Construction and Architectural Management", 29 (2022) 4132-4152. https://doi.org/10.1108/ECAM-05-2021-0428.
  • E. Kamel, A. Kazemian, BIM-integrated thermal analysis and building energy modeling in 3D-printed residential buildings, "Energy and Buildings", 279 (2023) 112670. https://doi.org/10.1016/j.enbuild.2022.112670.
  • M. Major, I. Minda, Zastosowanie technologii druku przestrzennego w budownictwie, "Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo", 172 (2017) 238-247. https://doi.org/10.17512/znb.2016.1.23.
  • J. Konopacki, Suitability of consumer 3D FDM printers as a tool to create architectural models, "Przestrzeń i Forma", 18 (2020) 65-80.
  • V. Parfenov, S. Igoshin, D. Masaylo, A. Orlov, D. Kuliashou, Use of 3D Laser Scanning and Additive Technologies for Reconstruction of Damaged and Destroyed Cultural Heritage Objects, "Quantum Beam Science" 6 (2022) 11. https://doi.org/10.3390/qubs6010011.
  • M. Žujović, R. Obradović, I. Rakonjac, J. Milošević, 3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review, "Buildings", 12 (2022) 1319. https://doi.org/10.3390/buildings12091319.
  • C.H. Ko, Constraints and limitations of concrete 3D printing in architecture, "Journal of Engineering, Design and Technology", 20 (2021), 1334-1348. https://doi.org/10.1108/JEDT-11-2020-0456.
  • S. Pessoa, A.S. Guimarães, S.S. Lucas, N. Simões, 3D printing in the construction industry - A systematic review of the thermal performance in buildings, "Renewable and Sustainable Energy Reviews", 141 (2021) 110794. https://doi.org/10.1016/j.rser.2021.110794.
  • I. Hager, A. Golonka, R. Putanowicz, 3D Printing of Buildings and Building Components as the Future of Sustainable Construction?, "Procedia Engineering" 151 (2016) 292-299. https://doi.org/10.1016/j.proeng.2016.07.357.
  • M.A. Hossain, A. Zhumabekova, S.C. Paul, J.R. Kim, A review of 3D printing in construction and its impact on the labor market, "Sustainability" 12 (2020) 1-21. https://doi.org/10.3390/su12208492.
  • EMT Systems, Domy z druku 3D, (2019).
  • R. García-Alvarado, G. Moroni-Orellana, P. Banda-Pérez, Architectural evaluation of 3d-printed buildings, "Buildings" 11 (2021) 254. https://doi.org/10.3390/buildings11060254.
  • S. Ma, S. Fu, Q. Wang, L. Xu, P. He, C. Sun, X. Duan, Z. Zhang, D. Jia, Y. Zhou, 3D Printing of Damage-tolerant Martian Regolith Simulant-based Geopolymer Composites, "Additive Manufacturing", 58 (2022) 103025. https://doi.org/10.1016/j.addma.2022.103025.
  • S. Lim, R.A. Buswell, T.T. Le, S.A. Austin, A.G.F. Gibb, T. Thorpe, Developments in construction-scale additive manufacturing processes, "Automation in Construction" 21 (2012) 262-268. https://doi.org/10.1016/j.autcon.2011.06.010.
  • S. Jokic, P. Novikov, Large Scale 3D Printing. "Mataerial, IAAC". (2013). http://iaac.net/researchprojects/large-scale-3d-printing/material/.
  • J. Liu, V. Nguyen-Van, B. Panda, K. Fox, A. Du Plessis, P. Tran, Additive Manufacturing of Sustainable Construction Materials and Form-finding Structures: A Review on Recent Progresses, 3D Print. "Additive Manufacturing" 9 (2022) 12-34. https://doi.org/10.1089/3dp.2020.0331.
  • A. Al Rashid, S.A. Khan, S. G. Al-Ghamdi, M. Koç, Additive manufacturing: Technology, applications, markets, and opportunities for the built environment, "Automation in Construction" 118 (2020) 103268. https://doi.org/10.1016/j.autcon.2020.103268.
  • J. Costa, E. Sequeiros, M.T. Vieira, M. Vieira, Additive Manufacturing, "U.Porto Journal of Engineering" 7 (2021) 53-69. https://doi.org/10.24840/2183-6493_007.003_0005.
  • D. Lowke, E. Dini, A. Perrot, D. Weger, C. Gehlen, B. Dillenburger, Particle-bed 3D printing in concrete construction - Possibilities and challenges, "Cement and Concrete Research" 112 (2018) 50-65. https://doi.org/10.1016/j.cemconres.2018.05.018.
  • P. Shakor, S.H. Chu, A. Puzatova, E. Dini, Review of binder jetting 3D printing in the construction industry, "Progress in Additive Manufacturing" 7 (2022) 643-669. https://doi.org/10.1007/s40964-021-00252-9.
  • A. Pajonk, A. Prieto, U. Blum, U. Knaack, Multi-material additive manufacturing in architecture and construction: A review, "Journal of Building Engineering" 45 (2022) 103603. https://doi.org/10.1016/j.jobe.2021.103603.
  • A. Meurisse, A. Makaya, C. Willsch, M. Sperl, Solar 3D printing of lunar regolith, "Acta Astronautica". 152 (2018) 800-810. https://doi.org/10.1016/j.actaastro.2018.06.063.
  • Contour Crafting, Technologies for building immediate infrastructure on the Moon and Mars for Future Colonization, (2017). https://www.contourcrafting.com/space.
  • J.S.J. Van Deventer, J.L. Provis, P. Duxson, D.G. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste and Biomass Valorization. 1 (2010) 145-155. https://doi.org/10.1007/s12649-010-9015-9.
  • Q. Munir, T. Kärki, Cost analysis of various factors for geopolymer 3d printing of construction products in factories and on construction sites, "Recycling". 6 (2021) 60. https://doi.org/10.3390/recycling6030060.
  • A. Rintala, J. Havukainen, M. Abdulkareem, Estimating the cost-competitiveness of recycling-based geopolymer concretes, "Recycling". 6 (2021) 46. https://doi.org/10.3390/recycling6030046.
  • V.V. Nguyen, V.S. Le, P. Louda, M.M. Szczypiński, R. Ercoli, R. Vojtěch, P. Łoś, K. Prałat, P. Plaskota, T. Pacyniak, K.E. Buczkowska, Low-Density Geopolymer Composites for the Construction Industry, "Polymers" (Basel). 14 (2022) 304. https://doi.org/10.3390/polym14020304.
  • H. Zhong, M. Zhang, 3D printing geopolymers: A review, "Cement and Concrete Composites" 128 (2022) 104455. https://doi.org/10.1016/j.cemconcomp.2022.104455.
  • M.H. Raza, R.Y. Zhong, M. Khan, Recent advances and productivity analysis of 3D printed geopolymers, "Additive Manufacturing" 52 (2022) 102685. https://doi.org/10.1016/j.addma.2022.102685.
  • Wikimedia Foundation, Geopolymer cement, Geopolymer Cement (2018). https://en.wikipedia.org/wiki/Geopolymer_cement.
  • L. Vinet, A. Zhedanov, A "missing" family of classical orthogonal polynomials, Princeton Architectural Press, New York, 2011. https://doi.org/10.1088/1751-8113/44/8/085201.
  • J. Archez, N. Texier-Mandoki, X. Bourbon, J.F. Caron, S. Rossignol, Shaping of geopolymer composites by 3D printing, "Journal of Building Engineering" 34 (2021) 101894. https://doi.org/10.1016/j.jobe.2020.101894.
  • A. Koper, K. Prałat, J. Ciemnicka, K. Buczkowska, Influence of the calcination temperature of synthetic gypsum on the particle size distribution and setting time of modified building materials, "Energies". 13 (2020) 5759. https://doi.org/10.3390/en13215759.
  • B. Xiao, C. Chen, X. Yin, Recent advancements of robotics in construction, " Automation in Construction" 144 (2022) 104591. https://doi.org/10.1016/j.autcon.2022.104591.
  • Y. Teng, J. Xu, W. Pan, Y. Zhang, A systematic review of the integration of building information modeling into life cycle assessment, "Building and Environment" 221 (2022) 109260. https://doi.org/10.1016/j.buildenv.2022.109260.
  • Q. Yuan, C. Gao, T. Huang, S. Zuo, H. Yao, K. Zhang, Y. Huang, J. Liu, Factors Influencing the Properties of Extrusion-Based 3D-Printed Alkali-Activated Fly Ash-Slag Mortar, "Materials" (Basel). 15 (2022) 1969. https://doi.org/10.3390/ma15051969.
  • P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the construction industry, "Automation in Construction", 68 (2016) 21-31. https://doi.org/10.1016/j.autcon.2016.04.005.
  • T. Wangler, E. Lloret, L. Reiter, N. Hack, F. Gramazio, M. Kohler, M. Bernhard, B. Dillenburger, J. Buchli, N. Roussel, R. Flatt, Digital concrete: Opportunities and challenges, "RILEM Technical Letters" 1 (2016) 67-75. https://doi.org/10.21809/rilemtechlett.2016.16.
  • M. Gomaa, W. Jabi, V. Soebarto, Y.M. Xie, Digital manufacturing for earth construction: A critical review, "Journal of Cleaner Production", 338 (2022) 130630. https://doi.org/10.1016/j.jclepro.2022.130630.
  • A. Jipa, B. Dillenburger, 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications, "3D Printing and Additive Manufacturing", 9 (2022) 84-107. https://doi.org/10.1089/3dp.2021.0024.
  • E. Tucker, Shanghai is now home to the world's largest 3D printed bridge, The Spaces, (2023).
  • S. Luhar, I. Luhar, Additive Manufacturing in the Geopolymer Construction Technology: A Review, "Open Construction & Building Technology Journal", 14 (2020) 150-161. https://doi.org/10.2174/1874836802014010150.
  • K. Pacewicz, A. Sobotka, L. Gołek, Characteristic of materials for the 3D printed building constructions by additive printing, MATEC Web Conf. 222 (2018) 01013. https://doi.org/10.1051/matecconf/201822201013.
  • A. Sobotka, K. Pacewicz, Building Site Organization with 3D Technology in Use, "Procedia Engineering", 161 (2016) 407-413. https://doi.org/10.1016/j.proeng.2016.08.582.
  • C. Harrouk, Dubai Municipality to Become the World's Largest 3D-Printed Building, "ArchDaily". (2019). https://www.archdaily.com/930857/dubai-municipality-to-become-the-worlds-largest-3d-printedbuilding.
  • R.A. Buswell, R.C. Soar, A.G.F. Gibb, A. Thorpe, Freeform Construction: Mega-scale Rapid Manufacturing for construction, "Automation in Construction"16 (2007) 224-231. https://doi.org/10.1016/j.autcon.2006.05.002.
  • N. Cheniuntai, Groundbreaking project, "Apis Cor". (2019). http://apis-cor.com/dubai-project.
  • B. Panda, S.C. Paul, N.A.N. Mohamed, Y.W.D. Tay, M.J. Tan, Measurement of tensile bond strength of 3D printed geopolymer mortar, "Measurement. Journal of the International Measurement Confederation", 113 (2018) 108-116. https://doi.org/10.1016/j.measurement.2017.08.051.
  • V. Voney, P. Odaglia, C. Brumaud, B. Dillenburger, G. Habert, From casting to 3D printing geopolymers: A proof of concept, "Cement and Concrete Research", 143 (2021) 106374. https://doi.org/10.1016/j.cemconres.2021.106374.
  • 3ders.org, 10 completely 3D printed houses appear in Shanghai, built under a day, (2014).
  • S. McGuire, Dubai Inaugurates First 3D Printed Office Building, (2016). https://www.giatecscientific.com/education/dubai-inaugurates-first-3d-printed-office-buildingconstructed-in-17-days/.
  • A. Dalton, World's first 3D-printed office opens in Dubai, Engadget. (2016).
  • Urban Innovative Actions, Lappeenranta, (2023). https://uia-initiative.eu/en/uia-cities/lappeenranta.
  • M. Matilainen, Urban Infra Revolution UIR, "Geopolymer Camp" (2018).
  • C. Ziejewska, J. Marczyk, K. Korniejenko, S. Bednarz, P. Sroczyk, M. Łach, J. Mikuła, B. Figiela, M. Szechyńska-Hebda, M. Hebda, 3D Printing of Concrete-Geopolymer Hybrids, "Materials" (Basel). 15 (2022) 2819. https://doi.org/10.3390/ma15082819.
  • J. Marczyk, C. Ziejewska, S. Gadek, K. Korniejenko, M. Łach, M. Góra, I. Kurek, N. Dogan-Saglamtimur, M. Hebda, M. Szechynska-Hebda, Hybrid materials based on fly ash, metakaolin, and cement for 3d printing, "Materials" (Basel). 14 (2021) 6874. https://doi.org/10.3390/ma14226874.
  • K. Korniejenko, P. Kejzlar, P. Louda, The Influence of the Material Structure on the Mechanical Properties of Geopolymer Composites Reinforced with Short Fibers Obtained with Additive Technologies, "International Journal of Molecular Sciences", 23 (2022) 2023. https://doi.org/10.3390/ijms23042023.
  • Y. Han, Z. Yang, T. Ding, J. Xiao, Environmental and economic assessment on 3D printed buildings with recycled concrete, J. Clean. Prod. 278 (2021) 123884. https://doi.org/10.1016/j.jclepro.2020.123884.
  • L. Gebhard, J. Burger, J. Mata-Falcón, E. Lloret Fritschi, F. Gramazio, M. Kohler, W. Kaufmann, Towards efficient concrete structures with ultra-thin 3D printed formwork: exploring reinforcement strategies and optimisation, "Virtual and Physical Prototyping", 17 (2022) 599-616. https://doi.org/10.1080/17452759.2022.2041873.
  • B. Panda, C. Unluer, M.J. Tan, Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing, "Cement and Concrete Composites", 94 (2018) 307-314. https://doi.org/10.1016/j.cemconcomp.2018.10.002.
  • S. Alonso-Canon, E. Blanco-Fernandez, D. Castro-Fresno, A.I. Yoris-Nobile, L. Castañon-Jano, Reinforcements in 3D printing concrete structures, "Archives of Civil and Mechanical Engineering", 23 (2023) 25. https://doi.org/10.1007/s43452-022-00552-z.
  • I. Hager, M. Maroszek, K. Mróz, R. Kęsek, M. Hebda, L. Dvorkin, V. Marchuk, Interlayer Bond Strength Testing in 3D-Printed Mineral Materials for Construction Applications, "Materials" (Basel). 15 (2022) 4112. https://doi.org/10.3390/ma15124112.
  • J. Sun, D. Ye, J. Zou, X. Chen, Y. Wang, J. Yuan, H. Liang, H. Qu, J. Binner, J. Bai, A review on additive manufacturing of ceramic matrix composites, "Journal of Materials Science & Technology", 138 (2023) 1-16. https://doi.org/10.1016/j.jmst.2022.06.039.
  • M. Amran, H.S. Abdelgader, A.M. Onaizi, R. Fediuk, T. Ozbakkaloglu, R.S.M. Rashid, G. Murali, 3Dprintable alkali-activated concretes for building applications: A critical review, "Construction and Building Materials", 319 (2022) 126126. https://doi.org/10.1016/j.conbuildmat.2021.126126.
  • A. Windapo, M. Yende, O. Kala, L. Maboreke, L. Matshidze, The Adoption of 3D Printing as a Construction Methodology in South Africa: What Are the Barriers?, in: Construction in 5D: Deconstruction, Digitalization, Disruption, Disaster, Development : Proceedings of the 15th Built Environment Conference, (Lecture Notes in Civil Engineering), 2023: pp. 79-89. https://doi.org/10.100/978-3-030-97748-1_7.
  • H. Song, X. Li, An overview on the rheology, mechanical properties, durability, 3D printing, and microstructural performance of nanomaterials in cementitious composites, "Materials" (Basel). 14 (2021) 2950. https://doi.org/10.3390/ma14112950.
  • J. Xiao, G. Ji, Y. Zhang, G. Ma, V. Mechtcherine, J. Pan, L. Wang, T. Ding, Z. Duan, S. Du, Large-scale 3D printing concrete technology: Current status and future opportunities, "Cement and Concrete Composites", 122 (2021) 104115. https://doi.org/10.1016/j.cemconcomp.2021.104115
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171669079

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.